To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

8-demicubic honeycomb

From Wikipedia, the free encyclopedia

8-demicubic honeycomb
(No image)
Type Uniform 8-honeycomb
Family Alternated hypercube honeycomb
Schläfli symbol h{4,3,3,3,3,3,3,4}
Coxeter diagrams =
=
Facets {3,3,3,3,3,3,4}
h{4,3,3,3,3,3,3}
Vertex figure Rectified 8-orthoplex
Coxeter group [4,3,3,3,3,3,31,1]
[31,1,3,3,3,3,31,1]

The 8-demicubic honeycomb, or demiocteractic honeycomb is a uniform space-filling tessellation (or honeycomb) in Euclidean 8-space. It is constructed as an alternation of the regular 8-cubic honeycomb.

It is composed of two different types of facets. The 8-cubes become alternated into 8-demicubes h{4,3,3,3,3,3,3}

and the alternated vertices create 8-orthoplex {3,3,3,3,3,3,4} facets
.

D8 lattice

The vertex arrangement of the 8-demicubic honeycomb is the D8 lattice.[1] The 112 vertices of the rectified 8-orthoplex vertex figure of the 8-demicubic honeycomb reflect the kissing number 112 of this lattice.[2] The best known is 240, from the E8 lattice and the 521 honeycomb.

contains as a subgroup of index 270.[3] Both and can be seen as affine extensions of from different nodes:

The D+
8
lattice (also called D2
8
) can be constructed by the union of two D8 lattices.[4] This packing is only a lattice for even dimensions. The kissing number is 240. (2n-1 for n<8, 240 for n=8, and 2n(n-1) for n>8).[5] It is identical to the E8 lattice. At 8-dimensions, the 240 contacts contain both the 27=128 from lower dimension contact progression (2n-1), and 16*7=112 from higher dimensions (2n(n-1)).

= .

The D*
8
lattice (also called D4
8
and C2
8
) can be constructed by the union of all four D8 lattices:[6] It is also the 7-dimensional body centered cubic, the union of two 7-cube honeycombs in dual positions.

= .

The kissing number of the D*
8
lattice is 16 (2n for n≥5).[7] and its Voronoi tessellation is a quadrirectified 8-cubic honeycomb, , containing all trirectified 8-orthoplex Voronoi cell, .[8]

Symmetry constructions

There are three uniform construction symmetries of this tessellation. Each symmetry can be represented by arrangements of different colors on the 256 8-demicube facets around each vertex.

Coxeter group Schläfli symbol Coxeter-Dynkin diagram Vertex figure
Symmetry
Facets/verf
= [31,1,3,3,3,3,3,4]
= [1+,4,3,3,3,3,3,3,4]
h{4,3,3,3,3,3,3,4} =
[3,3,3,3,3,3,4]
256: 8-demicube
16: 8-orthoplex
= [31,1,3,3,3,31,1]
= [1+,4,3,3,3,3,31,1]
h{4,3,3,3,3,3,31,1} =
[36,1,1]
128+128: 8-demicube
16: 8-orthoplex
2×½ = [[(4,3,3,3,3,3,4,2+)]] ht0,8{4,3,3,3,3,3,3,4} 128+64+64: 8-demicube
16: 8-orthoplex

See also

Notes

  1. ^ "The Lattice D8".
  2. ^ Sphere packings, lattices, and groups, by John Horton Conway, Neil James Alexander Sloane, Eiichi Bannai [1]
  3. ^ Johnson (2015) p.177
  4. ^ Kaleidoscopes: Selected Writings of H. S. M. Coxeter, Paper 18, "Extreme forms" (1950)
  5. ^ Conway (1998), p. 119
  6. ^ "The Lattice D8".
  7. ^ Conway (1998), p. 120
  8. ^ Conway (1998), p. 466

References

External links

Space Family / /
E2 Uniform tiling {3[3]} δ3 3 3 Hexagonal
E3 Uniform convex honeycomb {3[4]} δ4 4 4
E4 Uniform 4-honeycomb {3[5]} δ5 5 5 24-cell honeycomb
E5 Uniform 5-honeycomb {3[6]} δ6 6 6
E6 Uniform 6-honeycomb {3[7]} δ7 7 7 222
E7 Uniform 7-honeycomb {3[8]} δ8 8 8 133331
E8 Uniform 8-honeycomb {3[9]} δ9 9 9 152251521
E9 Uniform 9-honeycomb {3[10]} δ10 10 10
E10 Uniform 10-honeycomb {3[11]} δ11 11 11
En-1 Uniform (n-1)-honeycomb {3[n]} δn n n 1k22k1k21
This page was last edited on 17 March 2023, at 16:10
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.