To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

2 22 honeycomb

From Wikipedia, the free encyclopedia

222 honeycomb
(no image)
Type Uniform tessellation
Coxeter symbol 222
Schläfli symbol {3,3,32,2}
Coxeter diagram
6-face type 221
5-face types 211

{34}
4-face type {33}
Cell type {3,3}
Face type {3}
Face figure {3}×{3} duoprism
Edge figure {32,2}
Vertex figure 122
Coxeter group , [[3,3,32,2]]
Properties vertex-transitive, facet-transitive

In geometry, the 222 honeycomb is a uniform tessellation of the six-dimensional Euclidean space. It can be represented by the Schläfli symbol {3,3,32,2}. It is constructed from 221 facets and has a 122 vertex figure, with 54 221 polytopes around every vertex.

Its vertex arrangement is the E6 lattice, and the root system of the E6 Lie group so it can also be called the E6 honeycomb.

YouTube Encyclopedic

  • 1/5
    Views:
    214 305
    181 105
    247 311
    136 190
    17 505
  • 22 Alien Genetic Experiments, Secret Space Programs & Break Away Civilizations
  • Hollow Earth vs Honeycomb Earth & Inner Earth Civilizations - Corey Goode
  • Secret Space Programs, Aliens, Inner Earth Civilizations & Atlantis - CLE 2017 Corey Goode
  • Part 2 Mt Shasta Secret Space Program Conference - Corey Goode Presentation
  • Blue Star Kachina Hoax - Zuni Disclosure with Clifford Mahooty - EoD

Transcription

Construction

It is created by a Wythoff construction upon a set of 7 hyperplane mirrors in 6-dimensional space.

The facet information can be extracted from its Coxeter–Dynkin diagram, .

Removing a node on the end of one of the 2-node branches leaves the 221, its only facet type,

The vertex figure is determined by removing the ringed node and ringing the neighboring node. This makes 122, .

The edge figure is the vertex figure of the vertex figure, here being a birectified 5-simplex, t2{34}, .

The face figure is the vertex figure of the edge figure, here being a triangular duoprism, {3}×{3}, .

Kissing number

Each vertex of this tessellation is the center of a 5-sphere in the densest known packing in 6 dimensions, with kissing number 72, represented by the vertices of its vertex figure 122.

E6 lattice

The 222 honeycomb's vertex arrangement is called the E6 lattice.[1]

The E62 lattice, with [[3,3,32,2]] symmetry, can be constructed by the union of two E6 lattices:

The E6* lattice[2] (or E63) with [[3,32,2,2]] symmetry. The Voronoi cell of the E6* lattice is the rectified 122 polytope, and the Voronoi tessellation is a bitruncated 222 honeycomb.[3] It is constructed by 3 copies of the E6 lattice vertices, one from each of the three branches of the Coxeter diagram.

= dual to .

Geometric folding

The group is related to the by a geometric folding, so this honeycomb can be projected into the 4-dimensional 16-cell honeycomb.

{3,3,32,2} {3,3,4,3}

Related honeycombs

The 222 honeycomb is one of 127 uniform honeycombs (39 unique) with symmetry. 24 of them have doubled symmetry [[3,3,32,2]] with 2 equally ringed branches, and 7 have sextupled (3!) symmetry [[3,32,2,2]] with identical rings on all 3 branches. There are no regular honeycombs in the family since its Coxeter diagram a nonlinear graph, but the 222 and birectified 222 are isotopic, with only one type of facet: 221, and rectified 122 polytopes respectively.

Symmetry Order Honeycombs
[32,2,2] Full

8: , , , , , , , .

[[3,3,32,2]] ×2

24: , , , , , ,

, , , , , ,

, , , , , ,

, , , , , .

[[3,32,2,2]] ×6

7: , , , , , , .

Birectified 222 honeycomb

Birectified 222 honeycomb
(no image)
Type Uniform tessellation
Coxeter symbol 0222
Schläfli symbol {32,2,2}
Coxeter diagram
6-face type 0221
5-face types 022
0211
4-face type 021
24-cell 0111
Cell type Tetrahedron 020
Octahedron 011
Face type Triangle 010
Vertex figure Proprism {3}×{3}×{3}
Coxeter group , [[3,32,2,2]]
Properties vertex-transitive, facet-transitive

The birectified 222 honeycomb , has rectified 1 22 polytope facets, , and a proprism {3}×{3}×{3} vertex figure.

Its facets are centered on the vertex arrangement of E6* lattice, as:

Construction

The facet information can be extracted from its Coxeter–Dynkin diagram, .

The vertex figure is determined by removing the ringed node and ringing the neighboring node. This makes a proprism {3}×{3}×{3}, .

Removing a node on the end of one of the 3-node branches leaves the 122, its only facet type, .

Removing a second end node defines 2 types of 5-faces: birectified 5-simplex, 022 and birectified 5-orthoplex, 0211.

Removing a third end node defines 2 types of 4-faces: rectified 5-cell, 021, and 24-cell, 0111.

Removing a fourth end node defines 2 types of cells: octahedron, 011, and tetrahedron, 020.

k22 polytopes

The 222 honeycomb, is fourth in a dimensional series of uniform polytopes, expressed by Coxeter as k22 series. The final is a paracompact hyperbolic honeycomb, 322. Each progressive uniform polytope is constructed from the previous as its vertex figure.

k22 figures in n dimensions
Space Finite Euclidean Hyperbolic
n 4 5 6 7 8
Coxeter
group
A2A2 E6 =E6+ =E6++
Coxeter
diagram
Symmetry [[32,2,-1]] [[32,2,0]] [[32,2,1]] [[32,2,2]] [[32,2,3]]
Order 72 1440 103,680
Graph
Name −122 022 122 222 322

The 222 honeycomb is third in another dimensional series 22k.

22k figures of n dimensions
Space Finite Euclidean Hyperbolic
n 4 5 6 7 8
Coxeter
group
A2A2 A5 E6 =E6+ E6++
Coxeter
diagram
Graph
Name 22,-1 220 221 222 2<sub>23</sub>

Notes

  1. ^ "The Lattice E6".
  2. ^ "The Lattice E6".
  3. ^ The Voronoi Cells of the E6* and E7* Lattices Archived 2016-01-30 at the Wayback Machine, Edward Pervin

References

Space Family / /
E2 Uniform tiling {3[3]} δ3 3 3 Hexagonal
E3 Uniform convex honeycomb {3[4]} δ4 4 4
E4 Uniform 4-honeycomb {3[5]} δ5 5 5 24-cell honeycomb
E5 Uniform 5-honeycomb {3[6]} δ6 6 6
E6 Uniform 6-honeycomb {3[7]} δ7 7 7 222
E7 Uniform 7-honeycomb {3[8]} δ8 8 8 133331
E8 Uniform 8-honeycomb {3[9]} δ9 9 9 152251521
E9 Uniform 9-honeycomb {3[10]} δ10 10 10
E10 Uniform 10-honeycomb {3[11]} δ11 11 11
En-1 Uniform (n-1)-honeycomb {3[n]} δn n n 1k22k1k21
This page was last edited on 25 October 2023, at 00:39
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.