To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

1 33 honeycomb

From Wikipedia, the free encyclopedia

133 honeycomb
(no image)
Type Uniform tessellation
Schläfli symbol {3,33,3}
Coxeter symbol 133
Coxeter-Dynkin diagram
or
7-face type 132
6-face types 122

131
5-face types 121

{34}
4-face type 111

{33}
Cell type 101
Face type {3}
Cell figure Square
Face figure Triangular duoprism
Edge figure Tetrahedral duoprism
Vertex figure Trirectified 7-simplex
Coxeter group , [[3,33,3]]
Properties vertex-transitive, facet-transitive

In 7-dimensional geometry, 133 is a uniform honeycomb, also given by Schläfli symbol {3,33,3}, and is composed of 132 facets.

YouTube Encyclopedic

  • 1/5
    Views:
    441 501
    17 366
    9 696 131
    1 108 177
    2 303 925
  • Honeycomb Brioche knitting stitch pattern (ideal for Winter garments) - So Woolly
  • XS-3XL | Crochet Honeycomb Stitch Sweater | Fall Series: Ep. 1 | DIY Tutorial & Pattern
  • Psalms 104 sung in ancient Hebrew | ברכי נפשי את ה' - תהלים קד
  • Daisy Jones & The Six - Look At Us Now (Honeycomb)
  • I Built a Cardboard Airbnb!

Transcription

Construction

It is created by a Wythoff construction upon a set of 8 hyperplane mirrors in 7-dimensional space.

The facet information can be extracted from its Coxeter-Dynkin diagram.

Removing a node on the end of one of the 3-length branch leaves the 132, its only facet type.

The vertex figure is determined by removing the ringed node and ringing the neighboring node. This makes the trirectified 7-simplex, 033.

The edge figure is determined by removing the ringed nodes of the vertex figure and ringing the neighboring node. This makes the tetrahedral duoprism, {3,3}×{3,3}.

Kissing number

Each vertex of this polytope corresponds to the center of a 6-sphere in a moderately dense sphere packing, in which each sphere is tangent to 70 others; the best known for 7 dimensions (the kissing number) is 126.

Geometric folding

The group is related to the by a geometric folding, so this honeycomb can be projected into the 4-dimensional demitesseractic honeycomb.

{3,33,3} {3,3,4,3}

E7* lattice

contains as a subgroup of index 144.[1] Both and can be seen as affine extension from from different nodes:

The E7* lattice (also called E72)[2] has double the symmetry, represented by [[3,33,3]]. The Voronoi cell of the E7* lattice is the 132 polytope, and voronoi tessellation the 133 honeycomb.[3] The E7* lattice is constructed by 2 copies of the E7 lattice vertices, one from each long branch of the Coxeter diagram, and can be constructed as the union of four A7* lattices, also called A74:

= = dual of .

Related polytopes and honeycombs

The 133 is fourth in a dimensional series of uniform polytopes and honeycombs, expressed by Coxeter as 13k series. The final is a noncompact hyperbolic honeycomb, 134.

13k dimensional figures
Space Finite Euclidean Hyperbolic
n 4 5 6 7 8 9
Coxeter
group
A3A1 A5 D6 E7 =E7+ =E7++
Coxeter
diagram
Symmetry [3−1,3,1] [30,3,1] [31,3,1] [32,3,1] [[33,3,1]] [34,3,1]
Order 48 720 23,040 2,903,040
Graph
- -
Name 13,-1 130 131 132 133 1<sub>34</sub>

Rectified 133 honeycomb

Rectified 133 honeycomb
(no image)
Type Uniform tessellation
Schläfli symbol {33,3,1}
Coxeter symbol 0331
Coxeter-Dynkin diagram
or
7-face type Trirectified 7-simplex
Rectified 1_32
6-face types Birectified 6-simplex
Birectified 6-cube
Rectified 1_22
5-face types Rectified 5-simplex
Birectified 5-simplex
Birectified 5-orthoplex
4-face type 5-cell
Rectified 5-cell
24-cell
Cell type {3,3}
{3,4}
Face type {3}
Vertex figure {}×{3,3}×{3,3}
Coxeter group , [[3,33,3]]
Properties vertex-transitive, facet-transitive

The rectified 133 or 0331, Coxeter diagram has facets and , and vertex figure .

See also

Notes

  1. ^ N.W. Johnson: Geometries and Transformations, (2018) 12.4: Euclidean Coxeter groups, p.294
  2. ^ "The Lattice E7".
  3. ^ The Voronoi Cells of the E6* and E7* Lattices Archived 2016-01-30 at the Wayback Machine, Edward Pervin

References

Space Family / /
E2 Uniform tiling {3[3]} δ3 3 3 Hexagonal
E3 Uniform convex honeycomb {3[4]} δ4 4 4
E4 Uniform 4-honeycomb {3[5]} δ5 5 5 24-cell honeycomb
E5 Uniform 5-honeycomb {3[6]} δ6 6 6
E6 Uniform 6-honeycomb {3[7]} δ7 7 7 222
E7 Uniform 7-honeycomb {3[8]} δ8 8 8 133331
E8 Uniform 8-honeycomb {3[9]} δ9 9 9 152251521
E9 Uniform 9-honeycomb {3[10]} δ10 10 10
E10 Uniform 10-honeycomb {3[11]} δ11 11 11
En-1 Uniform (n-1)-honeycomb {3[n]} δn n n 1k22k1k21
This page was last edited on 25 March 2024, at 19:58
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.