To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Brownian bridge

From Wikipedia, the free encyclopedia

Brownian motion, pinned at both ends. This represents a Brownian bridge.

A Brownian bridge is a continuous-time stochastic process B(t) whose probability distribution is the conditional probability distribution of a standard Wiener process W(t) (a mathematical model of Brownian motion) subject to the condition (when standardized) that W(T) = 0, so that the process is pinned to the same value at both t = 0 and t = T. More precisely:

The expected value of the bridge at any t in the interval [0,T] is zero, with variance , implying that the most uncertainty is in the middle of the bridge, with zero uncertainty at the nodes. The covariance of B(s) and B(t) is , or s(T − t)/T if s < t. The increments in a Brownian bridge are not independent.

YouTube Encyclopedic

  • 1/5
    Views:
    475
    1 292
    6 789
    2 190
    9 629
  • Lecture Computational Finance / Numerical Methods 16-02: Brownian Bridge
  • Brownian bridge
  • Brownian Bridge: SDE, Solution, Mean, Variance, Covariance, Simulation, and Interpolation
  • Standard Brownian Motion & Brownian Bridge Processes
  • Arithmetic Brownian motion: solution, mean, variance, covariance, calibration, and, simulation

Transcription

Relation to other stochastic processes

If W(t) is a standard Wiener process (i.e., for t ≥ 0, W(t) is normally distributed with expected value 0 and variance t, and the increments are stationary and independent), then

is a Brownian bridge for t ∈ [0, T]. It is independent of W(T)[1]

Conversely, if B(t) is a Brownian bridge and Z is a standard normal random variable independent of B, then the process

is a Wiener process for t ∈ [0, 1]. More generally, a Wiener process W(t) for t ∈ [0, T] can be decomposed into

Another representation of the Brownian bridge based on the Brownian motion is, for t ∈ [0, T]

Conversely, for t ∈ [0, ∞]

The Brownian bridge may also be represented as a Fourier series with stochastic coefficients, as

where are independent identically distributed standard normal random variables (see the Karhunen–Loève theorem).

A Brownian bridge is the result of Donsker's theorem in the area of empirical processes. It is also used in the Kolmogorov–Smirnov test in the area of statistical inference.

Intuitive remarks

A standard Wiener process satisfies W(0) = 0 and is therefore "tied down" to the origin, but other points are not restricted. In a Brownian bridge process on the other hand, not only is B(0) = 0 but we also require that B(T) = 0, that is the process is "tied down" at t = T as well. Just as a literal bridge is supported by pylons at both ends, a Brownian Bridge is required to satisfy conditions at both ends of the interval [0,T]. (In a slight generalization, one sometimes requires B(t1) = a and B(t2) = b where t1, t2, a and b are known constants.)

Suppose we have generated a number of points W(0), W(1), W(2), W(3), etc. of a Wiener process path by computer simulation. It is now desired to fill in additional points in the interval [0,T], that is to interpolate between the already generated points W(0) and W(T). The solution is to use a Brownian bridge that is required to go through the values W(0) and W(T).

General case

For the general case when W(t1) = a and W(t2) = b, the distribution of B at time t ∈ (t1t2) is normal, with mean

and variance

and the covariance between B(s) and B(t), with s < t is

References

  1. ^ Aspects of Brownian motion, Springer, 2008, R. Mansuy, M. Yor page 2
  • Glasserman, Paul (2004). Monte Carlo Methods in Financial Engineering. New York: Springer-Verlag. ISBN 0-387-00451-3.
  • Revuz, Daniel; Yor, Marc (1999). Continuous Martingales and Brownian Motion (2nd ed.). New York: Springer-Verlag. ISBN 3-540-57622-3.
This page was last edited on 28 May 2024, at 09:31
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.