To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Dynkin's formula

From Wikipedia, the free encyclopedia

In mathematics — specifically, in stochastic analysisDynkin's formula is a theorem giving the expected value of any suitably smooth function applied to a Feller process at a stopping time. It may be seen as a stochastic generalization of the (second) fundamental theorem of calculus. It is named after the Russian mathematician Eugene Dynkin.

YouTube Encyclopedic

  • 1/5
    Views:
    3 918
    2 636
    6 382 495
    425
    790
  • Eugene Dynkin: Seventy Years in Mathematics
  • Lie groups and Lie algebras: Classification of Dynkin diagrams
  • The problem in Good Will Hunting - Numberphile
  • L02 6 Dynkin's identification theorem
  • Compact Lie groups and Lie algebras - Adjoint representation - Dynkin diagram

Transcription

Statement of the theorem

Let be a Feller process with infinitesimal generator . For a point in the state-space of , let denote the law of given initial datum , and let denote expectation with respect to . Then for any function in the domain of , and any stopping time with , Dynkin's formula holds:[1]

Example: Itô diffusions

Let be the -valued Itô diffusion solving the stochastic differential equation

The infinitesimal generator of is defined by its action on compactly-supported (twice differentiable with continuous second derivative) functions as[2]

or, equivalently,[3]

Since this is a Feller process, Dynkin's formula holds.[4] In fact, if is the first exit time of a bounded set with , then Dynkin's formula holds for all functions , without the assumption of compact support.[4]

Application: Brownian motion exiting the ball

Dynkin's formula can be used to find the expected first exit time of a Brownian motion from the closed ball which, when starts at a point in the interior of , is given by

This is shown as follows.[5] Fix an integer j. The strategy is to apply Dynkin's formula with , , and a compactly-supported with on . The generator of Brownian motion is , where denotes the Laplacian operator. Therefore, by Dynkin's formula,

Hence, for any ,

Now let to conclude that almost surely, and so as claimed.

References

  1. ^ Kallenberg (2021), Lemma 17.21, p383.
  2. ^ Øksendal (2003), Definition 7.3.1, p124.
  3. ^ Øksendal (2003), Theorem 7.3.3, p126.
  4. ^ a b Øksendal (2003), Theorem 7.4.1, p127.
  5. ^ Øksendal (2003), Example 7.4.2, p127.

Sources

  • Dynkin, Eugene B.; trans. J. Fabius; V. Greenberg; A. Maitra; G. Majone (1965). Markov processes. Vols. I, II. Die Grundlehren der Mathematischen Wissenschaften, Bände 121. New York: Academic Press Inc. (See Vol. I, p. 133)
  • Kallenberg, Olav (2021). Foundations of Modern Probability (third ed.). Springer. ISBN 978-3-030-61870-4.
  • Øksendal, Bernt K. (2003). Stochastic Differential Equations: An Introduction with Applications (Sixth ed.). Berlin: Springer. ISBN 3-540-04758-1. (See Section 7.4)
This page was last edited on 30 May 2024, at 19:09
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.