To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Regenerative process

From Wikipedia, the free encyclopedia

Regenerative processes have been used to model problems in inventory control. The inventory in a warehouse such as this one decreases via a stochastic process due to sales until it gets replenished by a new order.[1]

In applied probability, a regenerative process is a class of stochastic process with the property that certain portions of the process can be treated as being statistically independent of each other.[2] This property can be used in the derivation of theoretical properties of such processes.

YouTube Encyclopedic

  • 1/5
    Views:
    1 752
    19 636
    138 940
    3 912
    5 202
  • Petroleum Downstream Crash Course 22 - Catalytic Reforming Semi Regenerative Process
  • Understanding AEA Products & Programs | Regenerative Agriculture | David Miller, John Kempf
  • Nerve Regeneration | Wallerian Degeneration | Nerve Damage | ANIMATION | Neuron | The Young Orthopod
  • "Regeneration is the essence of life's self-organisation" Fritjof Capra & Daniel Wahl in dialogue
  • Mod-08 Lec-03 Markov Renewal and Markov Regenerative Processes

Transcription

History

Regenerative processes were first defined by Walter L. Smith in Proceedings of the Royal Society A in 1955.[3][4]

Definition

A regenerative process is a stochastic process with time points at which, from a probabilistic point of view, the process restarts itself.[5] These time point may themselves be determined by the evolution of the process. That is to say, the process {X(t), t ≥ 0} is a regenerative process if there exist time points 0 ≤ T0 < T1 < T2 < ... such that the post-Tk process {X(Tk + t) : t ≥ 0}

  • has the same distribution as the post-T0 process {X(T0 + t) : t ≥ 0}
  • is independent of the pre-Tk process {X(t) : 0 ≤ t < Tk}

for k ≥ 1.[6] Intuitively this means a regenerative process can be split into i.i.d. cycles.[7]

When T0 = 0, X(t) is called a nondelayed regenerative process. Else, the process is called a delayed regenerative process.[6]

Examples

Properties

where is the length of the first cycle and is the value over the first cycle.

References

  1. ^ Hurter, A. P.; Kaminsky, F. C. (1967). "An Application of Regenerative Stochastic Processes to a Problem in Inventory Control". Operations Research. 15 (3): 467–472. doi:10.1287/opre.15.3.467. JSTOR 168455.
  2. ^ Ross, S. M. (2010). "Renewal Theory and Its Applications". Introduction to Probability Models. pp. 421–641. doi:10.1016/B978-0-12-375686-2.00003-0. ISBN 9780123756862.
  3. ^ Schellhaas, Helmut (1979). "Semi-Regenerative Processes with Unbounded Rewards". Mathematics of Operations Research. 4: 70–78. doi:10.1287/moor.4.1.70. JSTOR 3689240.
  4. ^ Smith, W. L. (1955). "Regenerative Stochastic Processes". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 232 (1188): 6–31. Bibcode:1955RSPSA.232....6S. doi:10.1098/rspa.1955.0198.
  5. ^ a b c d Sheldon M. Ross (2007). Introduction to probability models. Academic Press. p. 442. ISBN 0-12-598062-0.
  6. ^ a b Haas, Peter J. (2002). "Regenerative Simulation". Stochastic Petri Nets. Springer Series in Operations Research and Financial Engineering. pp. 189–273. doi:10.1007/0-387-21552-2_6. ISBN 0-387-95445-7.
  7. ^ a b Asmussen, Søren (2003). "Regenerative Processes". Applied Probability and Queues. Stochastic Modelling and Applied Probability. Vol. 51. pp. 168–185. doi:10.1007/0-387-21525-5_6. ISBN 978-0-387-00211-8.
  8. ^ a b Sigman, Karl (2009) Regenerative Processes, lecture notes
This page was last edited on 26 February 2024, at 06:35
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.