To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Hewitt–Savage zero–one law

From Wikipedia, the free encyclopedia

The Hewitt–Savage zero–one law is a theorem in probability theory, similar to Kolmogorov's zero–one law and the Borel–Cantelli lemma, that specifies that a certain type of event will either almost surely happen or almost surely not happen. It is sometimes known as the Savage-Hewitt law for symmetric events. It is named after Edwin Hewitt and Leonard Jimmie Savage.[1]

YouTube Encyclopedic

  • 1/3
    Views:
    1 035
    7 315 569
    635
  • 5.3 Types of Energy and the Law of Conservation of Energy | Nelson Physics 11
  • 10 Worst Shark Attacks Ever Recorded
  • Exchangeable random arrays - Tim Austin

Transcription

Statement of the Hewitt-Savage zero-one law

Let be a sequence of independent and identically-distributed random variables taking values in a set . The Hewitt-Savage zero–one law says that any event whose occurrence or non-occurrence is determined by the values of these random variables and whose occurrence or non-occurrence is unchanged by finite permutations of the indices, has probability either 0 or 1 (a "finite" permutation is one that leaves all but finitely many of the indices fixed).

Somewhat more abstractly, define the exchangeable sigma algebra or sigma algebra of symmetric events to be the set of events (depending on the sequence of variables ) which are invariant under finite permutations of the indices in the sequence . Then .

Since any finite permutation can be written as a product of transpositions, if we wish to check whether or not an event is symmetric (lies in ), it is enough to check if its occurrence is unchanged by an arbitrary transposition , .

Examples

Example 1

Let the sequence of independent and identically distributed random variables take values in . Then the event that the series converges (to a finite value) is a symmetric event in , since its occurrence is unchanged under transpositions (for a finite re-ordering, the convergence or divergence of the series—and, indeed, the numerical value of the sum itself—is independent of the order in which we add up the terms). Thus, the series either converges almost surely or diverges almost surely. If we assume in addition that the common expected value (which essentially means that because of the random variables' non-negativity), we may conclude that

i.e. the series diverges almost surely. This is a particularly simple application of the Hewitt–Savage zero–one law. In many situations, it can be easy to apply the Hewitt–Savage zero–one law to show that some event has probability 0 or 1, but surprisingly hard to determine which of these two extreme values is the correct one.

Example 2

Continuing with the previous example, define

which is the position at step N of a random walk with the iid increments Xn. The event { SN = 0 infinitely often } is invariant under finite permutations. Therefore, the zero–one law is applicable and one infers that the probability of a random walk with real iid increments visiting the origin infinitely often is either one or zero. Visiting the origin infinitely often is a tail event with respect to the sequence (SN), but SN are not independent and therefore the Kolmogorov's zero–one law is not directly applicable here.[2]

References

  1. ^ Hewitt, E.; Savage, L. J. (1955). "Symmetric measures on Cartesian products". Trans. Amer. Math. Soc. 80: 470–501. doi:10.1090/s0002-9947-1955-0076206-8.
  2. ^ This example is from Shiryaev, A. (1996). Probability Theory (Second ed.). New York: Springer-Verlag. pp. 381–82.
This page was last edited on 19 February 2024, at 09:34
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.