To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.

Pitman–Yor process

From Wikipedia, the free encyclopedia

In probability theory, a Pitman–Yor process[1][2][3][4] denoted PY(dθG0), is a stochastic process whose sample path is a probability distribution. A random sample from this process is an infinite discrete probability distribution, consisting of an infinite set of atoms drawn from G0, with weights drawn from a two-parameter Poisson–Dirichlet distribution. The process is named after Jim Pitman and Marc Yor.

The parameters governing the Pitman–Yor process are: 0 ≤ d < 1 a discount parameter, a strength parameter θ > −d and a base distribution G0 over a probability space  X. When d = 0, it becomes the Dirichlet process. The discount parameter gives the Pitman–Yor process more flexibility over tail behavior than the Dirichlet process, which has exponential tails. This makes Pitman–Yor process useful for modeling data with power-law tails (e.g., word frequencies in natural language).

The exchangeable random partition induced by the Pitman–Yor process is an example of a Poisson–Kingman partition, and of a Gibbs type random partition.

YouTube Encyclopedic

  • 1/1
    4 915
  • ✪ Introduction to Dirichlet Processes and their use


Naming conventions

The name "Pitman–Yor process" was coined by Ishwaran and James[5] after Pitman and Yor's review on the subject.[2] However the process was originally studied in Perman et al.[6][7]

It is also sometimes referred to as the two-parameter Poisson–Dirichlet process, after the two-parameter generalization of the Poisson–Dirichlet distribution which describes the joint distribution of the sizes of the atoms in the random measure, sorted by strictly decreasing order.

See also


  1. ^ Ishwaran, H; James, L F (2003). "Generalized weighted Chinese restaurant processes for species sampling mixture models". Statistica Sinica. 13: 1211–1235.
  2. ^ a b Pitman, Jim; Yor, Marc (1997). "The two-parameter Poisson–Dirichlet distribution derived from a stable subordinator". Annals of Probability. 25 (2): 855–900. CiteSeerX doi:10.1214/aop/1024404422. MR 1434129. Zbl 0880.60076.
  3. ^ Pitman, Jim (2006). Combinatorial Stochastic Processes. 1875. Berlin: Springer-Verlag. ISBN 9783540309901.
  4. ^ Teh, Yee Whye (2006). "A hierarchical Bayesian language model based on Pitman–Yor processes". Proceedings of the 21st International Conference on Computational Linguistics and the 44th Annual Meeting of the Association for Computational Linguistics.
  5. ^ Ishwaran, H.; James, L. (2001). "Gibbs Sampling Methods for Stick-Breaking Priors". Journal of the American Statistical Association. 96 (453): 161–173. CiteSeerX doi:10.1198/016214501750332758.
  6. ^ Perman, M.; Pitman, J.; Yor, M. (1992). "Size-biased sampling of Poisson point processes and excursions". Probability Theory and Related Fields. 92: 21–39. doi:10.1007/BF01205234.
  7. ^ Perman, M. (1990). Random Discrete Distributions Derived from Subordinators (Thesis). Department of Statistics, University of California at Berkeley.

This page was last edited on 19 September 2019, at 18:38
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.