Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Альтернативы
Недавние
Show all languages
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

Мера Малера для многочлена с комплексными коэффициентами определяется как

где разлагается в поле комплексных чисел на множители

Меру Малера можно рассматривать как вид функции высоты. Используя формулу Йенсена, можно показать, что эта мера эквивалентна среднему геометрическому чисел для на единичной окружности (т.е. ):

В более широком смысле мера Малера для алгебраического числа определяется как мера Малера минимального многочлена от над . В частности, если является числом Пизо или числом Салема, то мера Малера равна просто .

Мера Малера названа в честь математика Курта Малера[англ.].

Свойства

  • Мера Малера является мультипликативной: где квантор всеобщности.
  • , где среднее степенное является нормой  для многочлена [1].
  • (Теорема Кронекера[англ.]) Если является неприводимым нормированным (старший коэффициент — 1) целочисленным многочленом с , то либо , либо является круговым многочленом.
  • (Гипотеза Лемера[англ.]) Если существует константа , такая, что если является неприводимым целочисленным многочленом, то либо , либо .
  • Мера Малера нормированного целого многочлена является числом Перрона.

Мера Малера от нескольких переменных

Мера Малера для многочлена с несколькими переменными определяется аналогичной формулой[2].

Эта мера сохраняет все три свойства меры Малера для многочлена от одной переменной.

Было показано, что в некоторых случаях мера Малера от нескольких переменных связана со специальными значениями дзета-функций и -функций. Например, в 1981 Смит доказал формулы[3]

где является L-функцией Дирихле, и

,

где является дзета-функцией Римана. Здесь называется логарифмической мерой Малера.

Теорема Лоутона

По определению мера Малера рассматривается как интеграл многочлена по тору (см. гипотезу Лемера[англ.]). Если обращается в ноль на торе , то сходимость интеграла, определяющего , не очевидна, но известно, что сходится и равно пределу меры Малера от одной переменной[4], что было высказано в виде гипотезы Бойдом[англ.][5][6].

Пусть обозначает целые числа, определим . Если является многочленом от переменных и , то пусть многочлен от одной переменной определяется как

а — как

,

где .

Теорема (Лоутона): пусть является многочленом от N переменных с комплексными коэффициентами — тогда верен следующий предел (даже если нарушить условие ):

Предложение Бойда

Бойд предложил утверждение, более общее, чем вышеприведённая теорема. Он указал на то, что классическая теорема Кронекера, которая характеризует нормированные многочлены с целыми коэффициентами, корни которых лежат внутри единичного круга, может рассматриваться как описание многочленов одной переменной, мера Малера для которых в точности равна 1, и на то, что этот результат можно распространить на многочлены нескольких переменных[6].

Пусть расширенный круговой многочлен будет определяться как многочлен вида

где круговой многочлен степени m, — целые числа, а выбран минимальным, так что является многочленом от . Пусть — множество многочленов, являющихся произведением одночленов и расширенного кругового многочлена. Тогда получается следующая теорема.

Теорема (Бойда): пусть является многочленом с целыми коэффициентами — тогда только когда является элементом .

Это натолкнуло Бойда на мысль рассматреть следующие множества:

и объединение . Он выдвинул более «продвинутую» гипотезу[5], что множество является замкнутым подмножеством . Из верности этой гипотезы немедленно следует верность гипотезы Лемера, хотя и без явной нижней границы. Поскольку из результата Смита[прояснить] вытекает, что , Бойд позже высказал гипотезу, что

См. также

Примечания

  1. Хотя это не является истинной нормой для значений .
  2. Schinzel, 2000, с. 224.
  3. Smyth, 2008.
  4. Lawton, 1983.
  5. 1 2 Boyd, 1981a.
  6. 1 2 Boyd, 1981b.

Литература

  • Peter Borwein. Computational Excursions in Analysis and Number Theory. — Springer, 2002. — Т. 10. — С. 3, 15. — (CMS Books in Mathematics). — ISBN 0-387-95444-9.
  • David Boyd. Speculations concerning the range of Mahler's measure // Canad. Math. Bull.. — 1981a. — Т. 24, вып. 4. — С. 453–469. — doi:10.4153/cmb-1981-069-5.
  • David Boyd. Kronecker's Theorem and Lehmer's Problem for Polynomials in Several Variables // Journal of Number Theory. — 1981b. — Т. 13. — С. 116–121. — doi:10.1016/0022-314x(81)90033-0.
  • David Boyd. Number theory for the Millenium / M. A. Bennett. — A. K. Peters, 2002a. — С. 127–143.
  • David Boyd. Mahler's measure, hyperbolic manifolds and the dilogarithm // Canadian Mathematical Society Notes. — 2002b. — Т. 34, вып. 2. — С. 3–4, 26–28.
  • David Boyd, F. Rodriguez Villegas. Mahler's measure and the dilogarithm, part 1 // Canadian J. Math.. — 2002. — Т. 54. — С. 468–492. — doi:10.4153/cjm-2002-016-9.
  • Hazewinkel, Michiel, ed. (2001), "Mahler measure", Encyclopedia of Mathematics, Springer, ISBN 978-1-55608-010-4.
  • J.L. Jensen. Sur un nouvel et important théorème de la théorie des fonctions // Acta Mathematica. — 1899. — Т. 22. — С. 359–364. — doi:10.1007/BF02417878.
  • Donald E. Knuth. 4.6.2 Factorization of Polynomials // Seminumerical Algorithms. — 3rd. — Addison-Wesley, 1997. — Т. 2. — С. 439–461, 678–691. — (The Art of Computer Programming). — ISBN 0-201-89684-2.
  • Wayne M. Lawton. A problem of Boyd concerning geometric means of polynomials // Journal of Number Theory. — 1983. — Т. 16. — С. 356–362. — doi:10.1016/0022-314X(83)90063-X.
  • M.J. Mossinghoff. Polynomials with Small Mahler Measure // Mathematics of Computation. — 1998. — Т. 67, вып. 224. — С. 1697–1706. — doi:10.1090/S0025-5718-98-01006-0.
  • Andrzej Schinzel. Polynomials with special regard to reducibility. — Cambridge University Press, 2000. — Т. 77. — (Encyclopedia of Mathematics and Its Applications). — ISBN 0-521-66225-7.
  • Chris Smyth. Number Theory and Polynomials / James McKee, Chris Smyth. — Cambridge University Press, 2008. — Т. 352. — С. 322–349. — (London Mathematical Society Lecture Note Series). — ISBN 978-0-521-71467-9.

Ссылки

Эта страница в последний раз была отредактирована 29 мая 2021 в 01:57.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).