Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Среднее геометрическое

Из Википедии — свободной энциклопедии

Средним геометрическим нескольких положительных вещественных чисел называется такое число, которым можно заменить каждое из этих чисел так, чтобы их произведение не изменилось. Более формально:

Среднее геометрическое двух чисел также называется их средним пропорциональным[1], поскольку среднее геометрическое двух чисел и обладает следующим свойством: , то есть среднее геометрическое относится к первому числу так же, как второе число к среднему геометрическому.

Свойства

  • Так же, как и любое другое среднее значение, среднее геометрическое лежит между минимумом и максимумом из всех чисел:
  • Среднее геометрическое двух чисел является средним арифметическим-гармоническим этих чисел, то есть равно пределу двух последовательностей:

Среднее геометрическое взвешенное

Среднее геометрическое взвешенное набора вещественных чисел с вещественными весами определяется как

В том случае, если все веса равны между собой, среднее геометрическое взвешенное равно среднему геометрическому.

В геометрии

Среднее геометрическое отрезков: B H = A H ⋅ H C = a b {\displaystyle BH={\sqrt {AH\cdot HC}}={\sqrt {ab}}}
Среднее геометрическое отрезков:

Высота прямоугольного треугольника, опущенная на гипотенузу, есть среднее пропорциональное между проекциями катетов на гипотенузу, а каждый катет есть среднее пропорциональное между гипотенузой и его проекцией на гипотенузу.

Это даёт геометрический способ построения среднего геометрического двух (длин) отрезков: нужно построить окружность на сумме этих двух отрезков как на диаметре, и тогда высота, восстановленная из точки их соединения до пересечения с окружностью, даст искомую величину.

Расстояние до горизонта сферы есть среднее геометрическое между расстоянием до самой ближней точки сферы и расстоянием до самой дальней точки сферы.

Обобщения

  • Среднее геометрическое можно рассматривать как предел средних степенных при .
  • Среднее геометрическое является средним Колмогорова при .

Примечания

  1. «Среднее пропорциональное». — статья из Большой советской энциклопедии
  2. Роу С. Геометрические упражнения с куском бумаги. — 2-е изд. — Одесса: Матезис, 1923.

См. также

Эта страница в последний раз была отредактирована 23 октября 2020 в 19:57.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).