Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Ковариантность и контравариантность (математика)

Из Википедии — свободной энциклопедии

Ковариа́нтность и контравариа́нтность — используемые в математике (линейной алгебре, дифференциальной геометрии, тензорном анализе) и в физике понятия, характеризующие то, как тензоры (скаляры, векторы, операторы, билинейные формы и т. д.) изменяются при преобразованиях базисов в соответствующих пространствах или многообразиях. Контравариантными называют «обычные» компоненты, которые при смене базиса пространства изменяются с помощью преобразования, обратного преобразованию базиса. Ковариантными — те, которые изменяются так же, как и базис.

Связь между ковариантными и контравариантными координатами тензора возможна только в пространствах, где задан метрический тензор (не следует путать с метрическим пространством).

Термины ковариантность и контравариантность были введены Сильвестром в 1853 году для исследований по алгебраической теории инвариантов.

Ковариантность и контравариантность в векторных пространствах

Контравариантные и ковариантные векторы

     вектор v, описанный в терминах  касательного базиса      e1, e2, e3 в      координатных кривых (слева), дуального базиса, ковекторного базиса или взаимного базиса      e1, e2, e3 в      координатных поверхностях (справа),  в 3-d общих криволинейных координатах (q1, q2, q3), кортеж чисел для определения точки в координатном пространстве. Обратите внимание, что базис и кобазис совпадают только тогда, когда базис ортогональный.[1]
     вектор v, описанный в терминах
касательного базиса
     e1, e2, e3 в      координатных кривых (слева),
дуального базиса, ковекторного базиса или взаимного базиса
     e1, e2, e3 в      координатных поверхностях (справа),
в 3-d общих криволинейных координатах (q1, q2, q3), кортеж чисел для определения точки в координатном пространстве. Обратите внимание, что базис и кобазис совпадают только тогда, когда базис ортогональный.[1]

Пусть  — некоторое конечномерное векторное пространство, и в нём задан некоторый базис . Произвольный вектор можно представить как линейную комбинацию векторов базиса: . В целях упрощения записи (и по причинам, которые станут ясны ниже) обозначим координаты с верхним индексом и примем правило Эйнштейна: если в выражении участвуют одинаковые разноуровневые индексы, то по ним предполагается суммирование. Таким образом, можно записать: . Зададим новый базис с помощью матрицы преобразования . По тем же соображениям введём нижние и верхние индексы (чтобы не писать знаки суммирования) — . Тогда (предполагается суммирование по индексу j). Обозначив обратную матрицу , можно записать: . Подставив эту формулу в координатное представление вектора x, получим: . Таким образом, координаты вектора в новом базисе оказываются равными , то есть преобразуются «противоположно» (обратно) изменению базиса. По этой причине такие векторы называют контравариантными — изменяющимися противоположно базису. Контравариантные векторы — это обычные векторы. Контравариантные векторы в координатном представлении обычно записывают как «вектор-столбец». Для идентификации контравариантных векторов используется верхний, или контравариантный, индекс.

Пространство всех линейных функционалов, отображающих векторы в числа, называют сопряжённым пространством . Оно также является векторным пространством той же размерности, что и основное пространство. В этом пространстве также можно определить базис. Обозначим элементы базиса сопряжённого пространства с верхним индексом . Любой функционал можно представить в этом базисе через координаты, которые будем обозначать нижними индексами. Тогда, применяя правило Эйнштейна, можем записать: , то есть любой линейный функционал можно записать просто набором чисел , как обычный вектор (за исключением нижнего расположения индекса).

Выберем базис в сопряженном пространстве так, что , то есть эти функционалы находят -ю координату вектора (проекцию на базисный вектор ). Такой базис называют дуальным (базису основного пространства). При смене базиса основного пространства необходимо сохранить это условие, то есть . Таким образом, дуальный базис изменяется обратно изменению основного базиса. Координаты произвольного линейного функционала будут меняться противоположно собственному базису (как и в любом пространстве), то есть с помощью матрицы . Следовательно, они будут меняться так, как основной базис. Это свойство называют ковариантностью. Сами линейные функционалы в координатном представлении в дуальном базисе называют ковариантными векторами, или кратко — ковекторами. Внешне ковектор «выглядит» как обычный вектор — в смысле обычного набора чисел, представляющих его координаты. Отличие ковектора от контрвариантного вектора заключается в правиле преобразования его координат при смене базиса: они преобразуются так, как базис, в отличие от контравариантных векторов, преобразующихся противоположно базису. Ковекторы в координатной форме записывают как «вектор-строку». Для идентификации ковекторов используется нижний, или ковариантный, индекс.

Контравариантность и ковариантность тензоров

Сказанное про контравариантность и ковариантность векторов можно обобщить на объекты с несколькими индексами — тензоры, частными случаями которых и являются векторы и ковекторы.

По аналогии с линейным функционалом рассмотрим функционал, ставящий в соответствие нескольким () векторам пространства некоторое число, обладающий свойством линейности по каждому вектору. Это так называемые полилинейные функции. Можно показать, что все -линейные функции образуют линейное пространство, в котором можно также ввести базис и представить произвольную -линейную функцию в координатном виде. Можно также показать, что их координаты преобразуются как базис основного пространства (так же как и ковариантные векторы). Поэтому такие полилинейные функции называют раз ковариантными тензорами. Их записывают с нижними индексами. Например, дважды ковариантный тензор обозначается так .

Аналогично можно рассматривать полилинейные функции не в основном пространстве, а в сопряженном пространстве , совокупность которых также образует линейное пространство , которое является сопряженным к . В координатном представлении в дуальном базисе они преобразуются так же, как базис пространства , а значит — противоположно базису основного пространства . То есть они обладают свойством контравариантности и называются раз контравариантным тензором. Их обозначают с верхними индексами. В частности, дважды контравариантный тензор запишется как .

Для рассматриваемых обычно пространств выполняется так называемый канонический изоморфизм и , то есть эти пространства можно считать неразличимыми. Поэтому 1-раз контравариантный тензор можно считать эквивалентным обычному контравариантному вектору.

Обобщая приведённые определения, можно рассматривать полилинейные функции от векторов и ковекторов одновременно. Соответственно, при смене базиса координатная запись такой функции будет преобразовываться с участием как матрицы преобразования основного базиса (в количестве ковекторов, участвующих в полилинейной функции), так и обратного ему (в количестве векторов полилинейной функции). Соответствующий тензор называют m раз контравариантным и k раз ковариантным — . Для ковариантных компонент используют нижние индексы, для контравариантных — верхние. Например, 1-раз контравариантный и 1 раз ковариантный тензор обозначается . Общее количество индексов называется рангом, или валентностью, тензора. Компонентами тензора являются значения полилинейной функции на базисных векторах. Например, .

Операция суммирования по одинаковым разноуровневым индексам тензоров называется свёрткой по этим индексам. Как уже было указано выше, по правилу Эйнштейна знак суммирования пропускают. В результате свёртки тензора по паре индексов его ранг уменьшается на 2. Например, отображение некоторого контравариантного вектора с помощью некоторого линейного оператора в тензорной записи будет иметь вид . Линейные операторы являются классическим примером тензора типа .

При преобразовании тензора типа при смене базиса m раз используется прямая матрица преобразования базиса и k раз обратная. Например, тензор типа при смене базиса преобразуется следующим образом:

Вообще, необходимо понимать, что сам объект от представления его в базисе не зависит. Все преобразования — это представления одного и того же объекта (тензора).

Метрический тензор

Если в линейном пространстве введено скалярное произведение  — билинейная форма (или в тензорной терминологии — дважды ковариантный тензор), обладающая свойствами симметричности и невырожденности, то такие пространства (конечномерные) называют евклидовыми (при условии положительной определённости соответствующей квадратичной формы ) или псевдоевклидовым (без ограничения знака квадратичной формы). Соответствующий этой билинейной форме тензор называют метрическим тензором. Компоненты этого тензора в данном базисе . Если этот базис ортонормированный (такой базис всегда существует в (псевдо)евклидовом пространстве), то матрица компонент является диагональной. На диагонали в случае евклидового пространства — единицы (единичная матрица). В случае псевдоевклидового пространства на диагонали кроме единиц имеются также и «минус-единицы». В общем случае, однако, базисы могут быть не ортогональными, поэтому метрический тензор может быть представлен и недиагональной матрицей (тем не менее в «плоском» пространстве всегда существует преобразование базиса, которое приводит его к диагональному виду).

С помощью метрического тензора скалярное произведение запишется как . В пространствах со скалярным произведением имеет место канонический изоморфизм пространства и сопряжённого пространства , то есть каждому вектору ставится в соответствие ковектор и наоборот. Это соответствие осуществляется как раз с помощью скалярного произведения или в тензорной записи — с помощью метрического тензора. А именно, можно записать . Эта операция называется опусканием или спуском индекса. Обратное соответствие осуществляется с помощью контравариантного метрического тензора . Эта операция называется поднятием или подъёмом индекса. Несложно показать, что матрицы ковариантного и контравариантного метрических тензоров взаимно-обратны, то есть . Скалярное произведение можно выразить как в контравариантных, так и в ковариантных векторах: .

В случае ортонормированного базиса в евклидовом пространстве метрический тензор — единичная матрица, поэтому ковариантный вектор в координатной записи совпадает с контравариантным. Поэтому в этом случае деление векторов на контравариантные и ковариантные не является необходимым. Однако уже при неортогональности базиса и (или) псевдоевклидовости пространства такое разграничение имеет значение. В псевдоевклидовом пространстве в ортогональном базисе ковекторы различаются знаками некоторых координат от обычного вектора. Система векторов и ковекторов в таком случае позволяет записывать формулу для квадрата длины вектора аналогично случаю евклидового пространства . В случае неортогональных (косоугольных) базисов в евклидовых (псевдоевклидовых) пространствах метрический тензор, преобразующий контравариантные векторы в ковариантные, не является диагональным. При этом длина вектора записывается также как в евклидовом пространстве с помощью контравариантных и ковариантных векторов. Все эти случаи объединяет одно — метрический тензор (в данном базисе) имеет одинаковую матрицу для всех точек (векторов) пространства.

В пространствах с метрическим тензором «ковариантный вектор» и «контравариантный вектор» являются фактически разными представлениями (записями в виде набора чисел) одного и того же геометрического объекта — обычного вектора или ковектора. То есть один и тот же вектор может быть записан как ковариантный (то есть набор ковариантных координат) и контравариантный (то есть набор контравариантных координат). То же можно сказать о ковекторе. Преобразование одного представления в другое осуществляется просто свёрткой с метрическим тензором. Содержательно же векторы и ковекторы различают лишь по тому, какое из представлений для них естественно. Естественным для обычного вектора является контравариантное представление. Для ковариантного вектора естественным является свертка с обычными векторами без участия метрики. Примером ковариантного вектора является градиент скалярной функции . Его свёртка с контравариантным (обычным) вектором даёт инвариант — дифференциал функции . Таким образом, если мы принимаем в качестве обычных векторов пространства, то градиент должен быть ковектором, чтобы при свёртывании не нужно было использовать метрический тензор. При этом сами векторы требуют при свёртывании с такими же векторами использования метрического тензора .

Если речь идет об обычном физическом пространстве, простым признаком ковариантности-контравариантрности вектора является то, как свёртывается его естественное представление с набором координат пространственного перемещения , являющегося образцом контравариантного вектора. Те, что свёртываются с посредством простого суммирования, без участия метрики, — это ковариантные векторы, а те, что с участием метрики — это контравариантные векторы. Если же пространство и координаты настолько абстрактны, что нет способа различить главный и дуальный базис, кроме как произвольным условным выбором, то содержательное различие между ковариантными и контравариантными векторами пропадает, или становится также чисто условным.

Нередко ковариантным вектором, особенно в физической литературе, называют разложение любого вектора (то есть вектора или ковектора, вектора касательного или кокасательного пространства) по дуальному базису. Тогда речь идет о наборе ковариантных координат любого объекта, обычно, однако, каждый тип объектов стараются записывать в естественном для него базисе, что соответствует основному определению.

Обобщение на криволинейные базисы и искривлённые пространства

Координаты евклидового (псеводоевклидового) пространства могут быть и криволинейными. Классический пример криволинейных координат — полярные координаты на евклидовой плоскости. В таком случае координатные базисы можно считать линейными лишь в бесконечно малых окрестностях данной точки. Поэтому справедливым остаётся выражение для квадрата расстояния для достаточно близких точек: . В случае криволинейных координат метрический тензор меняется от точки к точке. Таким образом, он представляет собой тензорное поле — каждой точке пространства оказывается сопоставлен некоторый метрический тензор.

Более общая ситуация имеет место в случае искривлённых пространств — римановых (псевдоримановых) многообразий. Искривлённое пространство можно наглядно представить для случая двумерной поверхности — некоторая гладкая кривая поверхность в трёхмерном пространстве (например, сферическая поверхность). Внутренняя геометрия такой поверхности (искривлённой) — это геометрия искривлённого пространства. В общем случае искривлённого пространства размерности  его можно представить себе как произвольную (искривлённую) гиперповерхность в пространстве большей размерности. Для гладких многообразий со счетной базой доказана теорема Уитни о вложении, согласно которой любое такое многообразие размерности является вложенным в «плоское» (то есть неискривлённое евклидово или псевдоевклидово) пространство размерности .

В искривлённом пространстве могут и не существовать ортогональные и вообще линейные координатные базисы. В общем случае приходится иметь дело именно с криволинейными базисами. В этом случае применение всего вышеуказанного формализма ковариантных и контравариантных векторов приобретает не просто особую важность, а становится неизбежным.

Общие определения

В случае криволинейных координат или искривлённых пространств новые координаты являются, вообще говоря, нелинейными функциями старых координат: . Для бесконечно малых изменений старых координат можно определить изменения новых координат через якобиан указанных функций:

Любой вектор , преобразующийся так же, как и , то есть

называется контравариантным вектором.

Для некоторой скалярной функции координат рассмотрим её градиент . При переходе к другим координатам имеем:

Любой вектор , преобразующийся так же, как градиент, то есть

называется ковариантным вектором.

Соответственно, раз контравариантным и раз ковариантным тензором (тензором типа ) называется объект, преобразующийся при смене базиса применением раз «обратного» преобразования и раз «прямого» преобразования .

Например, дважды контравариантный тензор и дважды ковариантный тензор преобразуются по следующим законам:

А для 1 раз контравариантного и 1 раз ковариантного тензора преобразования имеют вид:

Обычно для указания, что компоненты тензора преобразованы к новому базису со штрихом, штрих указывают у соответствующих индексов тензора, а не у его буквенного обозначения, в таком случае вышеуказанные формулы записывают так

Алгебра и геометрия

В теории категорий, функторы могут быть ковариантными и контравариантными. Сопряжённое пространство векторного пространства — стандартный пример контравариантного функтора. Некоторые конструкции мультилинейной алгебры являются смешанными, и не являются функторами.

В геометрии то же самое отображение различается в или из пространства, что позволяет определить вариантность конструкции. Касательный вектор к гладкому многообразию M в точке P — это класс эквивалентности кривых в M, проходящих через данную точку P. Поэтому он контравариантен относительно гладкого отображения M. Ковариантный вектор, или ковектор, таким же способом конструируется из гладкого отображения из M на вещественную ось около P в кокасательном расслоении, построенном на сопряжённом пространстве касательного расслоения.

Ковариантные и контравариантные компоненты преобразуются разными способами при преобразованиях базисов и, соответственно, координат, если брать, как это делают обычно, координатные базисы. .

См. также

Примечания

  1. J.A. Wheeler; C. Misner; K.S. Thorne. Gravitation (неопр.). — W.H. Freeman & Co, 1973. — ISBN 0-7167-0344-0.

Литература

  • Sternberg, Shlomo (1983), Lectures on differential geometry, New York: Chelsea, ISBN 978-0-8284-0316-0 .
  • Кильчевский Н. А. Элементы тензорного исчисления и его приложения к механике, Гостехиздат 1954 г.
Эта страница в последний раз была отредактирована 4 мая 2021 в 19:34.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).