To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Función indicatriz

De Wikipedia, la enciclopedia libre

Gráfico de una función indicatriz que muestra a un subconjunto de los puntos de un cuadrado en (en rojo), donde los puntos tienen coordenada z=1 (color ocre), mientras que los puntos del cuadrado tienen coordenada z=0 (rojos).

En matemáticas, una función indicatriz o función característica, es una función definida sobre un conjunto que indica la pertenencia o no en un subconjunto de .

YouTube Encyclopedic

  • 1/5
    Views:
    4 218
    929
    1 000
    1 096
    719
  • 0626 Función característica: definición
  • Función caracteristica de la clase pt1
  • Función caracteristica de la clase p
  • 0626 Función característica: fórmula de inversión
  • Clase 20: Función generatriz y Operadores

Transcription

Definición

La función indicatriz del subconjunto de un conjunto es una función:

El término de función indicatriz es a veces útil en lugar de función característica, esta denominación evita la confusión con la función característica usada en probabilidades, pero puede producir uno nuevo, con la función indicatriz en análisis convexo.

La función en ocasiones se expresa , o incluso . (La letra se usa porque es la letra inicial de la palabra característica en griego). Otra forma de notación corresponde al corchete de Iverson en donde escribimos

.

(Importante: La función puede ser considerada también como la función identidad en el conjunto ).

Propiedades básicas

El interés principal de estas funciones es de transformar relaciones entre conjuntos a relaciones entre funciones.[1]

La función indicatriz o característica de un subconjunto de un conjunto , asocia elementos de al conjunto .

La correspondencia es sobreyectiva solo cuando es un subconjunto propio de . Si , entonces . Por un argumento similar, si entonces .

En lo siguiente, el punto representa multiplicación, 1·1 = 1, 1·0 = 0 etc. "+" y "−" representan suma y resta. "" y "" son intersección y unión respectivamente.

Si y son dos subconjuntos de , entonces

(intersección de conjuntos)
(unión de conjuntos)
(diferencia simétrica de conjuntos)
(complemento de un conjunto)

Pero si tomamos como el anillo con sus operaciones de suma y producto habituales, entonces:

(intersección de conjuntos)
(diferencia simétrica de conjuntos)

mostrando que la función que asigna a cada subconjunto del conjunto potencia de su función característica es un isomorfismo de anillos entre el conjunto potencia de (con la intersección y la diferencia simétrica de conjuntos como producto y suma respectivamente) y el conjunto de las funciones de en con la suma y producto de funciones definidas por las operaciones dentro del anillo punto a punto sobre todo .

Continuando con el complemento de conjuntos, y generalizando: supongamos que es una colección de subconjuntos de ; si denotamos como el conjunto de índices, entonces:

, para todo .

es claramente un producto de s y s. Este producto vale 1 precisamente para los que no pertenecen a ninguno de los conjuntos y en caso contrario. Esto es,

Expandiendo el producto del lado izquierdo,

donde es la cardinalidad de . Esta es una forma del principio de inclusión-exclusión.

Como sugiere el ejemplo anterior, la función indicatriz es un elemento útil para notación en combinatoria. La notación se usa en otras partes también, por ejemplo en teoría de la probabilidad: si es un espacio de probabilidad con medida de probabilidad y es un conjunto medible, entonces se convierte en una variable aleatoria cuyo valor esperado es igual a la probabilidad de :

Esta identidad se usa en una prueba simple de la desigualdad de Markov.

En muchos casos, como en teoría del orden, la inversa de la función indicatriz puede definirse.

Continuidad

Si : es un subespacio del espacio topológico : y si el conjunto tiene la topología discreta (en este caso corresponde a la topología inducida por la topología usual de ), el conjunto de los puntos de : en los cuales la función es discontinua corresponde a la frontera de :.

Medible

Si es un espacio medible, esto es, si Ω es una tribu sobre , un subconjunto es un conjunto medible si y solo si la función indicatriz es una función medible.

Véase también

Referencias

  1. Godement, Roger (1998). Analyse mathematique. I : Convergence, fonctions élémentaires, vol. 1 (en francés). Springer. p. 22. ISBN 3-540-63212-3. 
Esta página se editó por última vez el 16 feb 2024 a las 17:29.
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.