To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Complemento de un conjunto

De Wikipedia, la enciclopedia libre

El complementario de un conjunto A es otro conjunto A que contiene todos los elementos (dentro del universo U) que no están en A.
El complementario de un conjunto A es otro conjunto A que contiene todos los elementos (dentro del universo U) que no están en A.

El complemento de un conjunto o conjunto complementario es otro conjunto que contiene todos los elementos que no están en el conjunto original. Para poder definirlo es necesario especificar qué tipo de elementos se están utilizando, o de otro modo, cuál es el conjunto universal. Por ejemplo, si se habla de números naturales, el complementario del conjunto de los números primos P es el conjunto de los números no primos C, que está formado por los números compuestos y el 1:

A su vez, el conjunto P es el complementario de C. El conjunto complementario se denota por una barra horizontal o por el superíndice «», por lo que se tiene: P = C, y también C = P.

El conjunto complementario de A es la diferencia (o complementario relativo) entre el conjunto universal y A, por lo que ambas operaciones (complementario y diferencia) tienen propiedades similares.

Definición

Complementario de un conjunto A.
Complementario de un conjunto A.

Dado un conjunto A, su complementario es el conjunto formado por los elementos que no pertenecen a A:

El complementario de A es otro conjunto A cuyos elementos son todos aquellos que no están en A:

Esta definición presupone que se ha especificado un conjunto universal U, pues de otro modo, en la afirmación «todos los x que no están en A», la palabra «todos» es ambigua. Si se menciona explícitamente el conjunto universal U, entonces el complementario de A es el conjunto de todos los elementos de U que no están en A, por lo que la relación con la diferencia es clara:

Por otro lado, considerando un conjunto universal, la diferencia entre dos conjuntos puede expresarse utilizando la noción de complementariedad:

Ejemplo.

  • El complementario del conjunto de todos los hombres es el conjunto de todas las mujeres (hablando de personas).
  • Hablando de números naturales, el complementario del conjunto {1, 5, 6, 7, 8, 10} es el conjunto {2, 3, 4, 9, 11, 12, ...}.
  • El complementario del conjunto A en la imagen es la zona sombreada de azul (el conjunto universal U es toda el área del rectángulo).

Propiedades

Puesto que el conjunto universal contiene todos los elementos en consideración, y el conjunto vacío no contiene a ninguno, se tiene lo siguiente:

Puesto que la noción de complementariedad está relacionada con la negación en lógica, la primera posee propiedades similares a la segunda:

  • La unión de un conjunto y su complementario es el conjunto universal:
  • Un conjunto y su complementario son disjuntos:
  • El complementario de A está contenido en el complementario de cualquier subconjunto de A:

En también unas relaciones entre las operaciones de unión e intersección a través del complemento:

Leyes de De Morgan

  • El complementario de la unión de dos conjuntos es la intersección de los complementarios:
  • El complementario de la intersección de dos conjuntos es la unión de los complementarios:

Relación Complementaria

Una Relación binaria R se define como un subconjunto de un producto cartesiano X × Y. La relación complementaria es el complemento del conjunto R en X × Y. El complemento de la relación R puede ser escrito como

Aquí, R es a menudo visto como una  matriz lógica con filas representado los elementos de X, y las columnas los elementos de Y. La verdad de aRb corresponde a 1 en la fila a , columna b . Produciendo la relación complementaria de "R" que corresponde a cambiar todos los 1 a 0 y los 0 a 1 para la matriz lógica del complemento.

Junto con la composición de relaciones y la relación inversa , las relaciones complementarias y el álgebra de conjuntos son la  operación elemental de la lógica algebraica

Véase también

Referencias

  • Lipschutz, Seymour (1991). Teoría de conjuntos y temas afines. McGraw-Hill. ISBN 968-422-926-7. 
Esta página se editó por última vez el 15 sep 2021 a las 20:25.
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.