To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.

Strong Nash equilibrium

From Wikipedia, the free encyclopedia

Strong Nash equilibrium
A solution concept in game theory
Subset ofEvolutionarily stable strategy (if the strong Nash equilibrium is not also weak)
Used forAll non-cooperative games of more than 2 players

In game theory a strong Nash equilibrium is a Nash equilibrium in which no coalition, taking the actions of its complements as given, can cooperatively deviate in a way that benefits all of its members.[1] While the Nash concept of stability defines equilibrium only in terms of unilateral deviations, strong Nash equilibrium allows for deviations by every conceivable coalition.[2] This equilibrium concept is particularly useful in areas such as the study of voting systems, in which there are typically many more players than possible outcomes, and so plain Nash equilibria are far too abundant.

The strong Nash concept is criticized as too "strong" in that the environment allows for unlimited private communication. In fact, strong Nash equilibrium has to be Pareto-efficient. As a result of these requirements, Strong Nash rarely exists in games interesting enough to deserve study. Nevertheless, it is possible for there to be multiple strong Nash equilibria. For instance, in Approval voting, there is always a strong Nash equilibrium for any Condorcet winner that exists, but this is only unique (apart from inconsequential changes) when there is a majority Condorcet winner.

A relatively weaker yet refined Nash stability concept is called coalition-proof Nash equilibrium (CPNE) [2] in which the equilibria are immune to multilateral deviations that are self-enforcing. Every correlated strategy supported by iterated strict dominance and on the Pareto frontier is a CPNE.[3] Further, it is possible for a game to have a Nash equilibrium that is resilient against coalitions less than a specified size k. CPNE is related to the theory of the core.

Confusingly, the concept of a strong Nash equilibrium is unrelated to that of a weak Nash equilibrium. That is, a Nash equilibrium can be both strong and weak, either, or neither.

YouTube Encyclopedic

  • 1/3
    295 917
    578 642
    41 995
  • Intro to Game Theory and the Dominant Strategy Equilibrium
  • Prisoners' dilemma and Nash equilibrium | Microeconomics | Khan Academy
  • Game Theory 101 MOOC (#12): Strict Dominance in Mixed Strategies



  1. ^ R. Aumann (1959), Acceptable points in general cooperative n-person games in "Contributions to the Theory of Games IV", Princeton Univ. Press, Princeton, N.J..
  2. ^ a b B. D. Bernheim; B. Peleg; M. D. Whinston (1987), "Coalition-Proof Equilibria I. Concepts", Journal of Economic Theory, 42: 1–12, doi:10.1016/0022-0531(87)90099-8.
  3. ^ D. Moreno; J. Wooders (1996), "Coalition-Proof Equilibrium", Games and Economic Behavior, 17: 80–112, doi:10.1006/game.1996.0095, hdl:10016/4408.

This page was last edited on 13 April 2020, at 14:13
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.