To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.

Rendezvous problem

From Wikipedia, the free encyclopedia

The rendezvous dilemma is a logical dilemma, typically formulated in this way:

Two people have a date in a park they have never been to before. Arriving separately in the park, they are both surprised to discover that it is a huge area and consequently they cannot find one another. In this situation each person has to choose between waiting in a fixed place in the hope that the other will find them, or else starting to look for the other in the hope that they have chosen to wait somewhere.

If they both choose to wait, they will never meet. If they both choose to walk there are chances that they meet and chances that they do not. If one chooses to wait and the other chooses to walk, then there is a theoretical certainty that they will meet eventually; in practice, though, it may take too long for it to be guaranteed. The question posed, then, is: what strategies should they choose to maximize their probability of meeting?

Examples of this class of problems are known as rendezvous problems. These problems were first introduced informally by Steve Alpern in 1976,[1] and he formalised the continuous version of the problem in 1995.[2] This has led to much recent research in rendezvous search.[3] Even the symmetric rendezvous problem played in n discrete locations (sometimes called the Mozart Cafe Rendezvous Problem)[4] has turned out to be very difficult to solve, and in 1990 Richard Weber and Eddie Anderson conjectured the optimal strategy.[5] Only recently has the conjecture been proved for n = 3 by Richard Weber.[6] This was the first non-trivial symmetric rendezvous search problem to be fully solved. Note that the corresponding asymmetric rendezvous problem has a simple optimal solution: one player stays put and the other player visits a random permutation of the locations.

As well as being problems of theoretical interest, rendezvous problems include real-world problems with applications in the fields of synchronization, operating system design, operations research, and even search and rescue operations planning.

YouTube Encyclopedic

  • 1/1
    4 483
  • Control of Mobile Robots- 2.4 Sensors


Deterministic rendezvous problem

The deterministic rendezvous problem is a variant of the rendezvous problem where the players, or robots, must find each other by following a deterministic sequence of instructions. Although each robot follows the same instruction sequence, a unique label assigned to each robot is used for symmetry breaking.[7]

See also


  1. ^ Alpern, Steve (1976), Hide and Seek Games, Seminar, Institut fur Hohere Studien, Wien, 26 July.
  2. ^ Alpern, Steve (1995), "The rendezvous search problem", SIAM Journal on Control and Optimization, 33 (3): 673–683, doi:10.1137/S0363012993249195, MR 1327232
  3. ^ Alpern, Steve; Gal, Shmuel (2003), The Theory of Search Games and Rendezvous, International Series in Operations Research & Management Science, 55, Boston, MA: Kluwer Academic Publishers, ISBN 0-7923-7468-1, MR 2005053.
  4. ^ Alpern, Steve (2011), "Rendezvous search games", in Cochran, James J. (ed.), Wiley Encyclopedia of Operations Research and Management Science, Wiley, doi:10.1002/9780470400531.eorms0720.
  5. ^ Anderson, E. J.; Weber, R. R. (1990), "The rendezvous problem on discrete locations", Journal of Applied Probability, 27 (4): 839–851, doi:10.2307/3214827, JSTOR 3214827, MR 1077533.
  6. ^ Weber, Richard (2012), "Optimal symmetric Rendezvous search on three locations" (PDF), Mathematics of Operations Research, 37 (1): 111–122, doi:10.1287/moor.1110.0528, MR 2891149.
  7. ^ Ta-Shma, Amnon; Zwick, Uri (April 2014). "Deterministic rendezvous, treasure hunts, and strongly universal exploration sequences". ACM Transactions on Algorithms. 10 (3). 12. doi:10.1145/2601068. S2CID 10718957.
This page was last edited on 10 January 2021, at 04:53
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.