Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

Теория возмущений — метод приближенного решения задач теоретической физики, применимый в том случае, когда в задаче присутствует малый параметр, причём в пренебрежении этим параметром задача имеет точное решение.

Физические величины, рассчитанные по теории возмущений, имеют вид ряда

где — решение невозмущённой задачи, — малый параметр. Коэффициенты находятся путём последовательных приближений, то есть выражается через . Применяется в небесной механике, квантовой механике, квантовой теории поля и т. д.

В небесной механике

Исторически, первой дисциплиной, в которой была разработана теория возмущений, была небесная механика. Задача нахождения движения планет Солнечной системы есть задача  тел, которая, в отличие от задачи двух тел, не имеет точного аналитического решения. Её решение, однако, облегчается тем, что ввиду малой массы планет, притяжение планет друг к другу намного слабее, чем притяжение их Солнцем. В пренебрежении массами планет задача сводится к независимым задачам двух тел, которые решаются точно; каждая планета движется в поле тяготения Солнца по эллиптической орбите согласно законам Кеплера. Это есть решение невозмущённой задачи, или нулевое приближение. Силы, действующие со стороны других планет, приводят к искажению, или возмущению этих эллиптических орбит. Для вычисления траектории планеты с учётом возмущения применяется следующий метод.

Положение планеты в пространстве и её скорость можно задать при помощи шести величин (по числу степеней свободы): большая полуось и эксцентриситет орбиты, наклонение орбиты её к плоскости эклиптики, долгота восходящего узла, долгота перигелия и момент прохождения через перигелий. Эти величины (обозначим их для простоты ) выгодно отличаются от декартовых координат и компонент скорости тем, что для невозмущённого движения они постоянны:

поэтому уравнения движения планеты, записанные через них, содержат малый параметр в правой части:

Ввиду этого, решать уравнения движения удобно методом последовательных приближений. В первом приближении подставим в правую часть решения невозмущённого уравнения, и найдём:

Для нахождения второго приближения подставляем найденное решение в правую часть (*) и решаем получившиеся уравнения и т. д.

В квантовой механике

Теория возмущений в квантовой механике применяется в том случае, когда гамильтониан системы можно представить в виде

где невозмущённый гамильтониан (причём решение соответствующего уравнения Шрёдингера известно точно), а — малая добавка (возмущение).

Стационарная теория возмущений

Задача состоит в нахождении собственных функций гамильтониана (стационарных состояний) и соответствующих уровней энергии. Будем искать решения уравнения Шрёдингера для нашей системы

в виде разложения в ряд

где и — волновые функции и энергетические уровни невозмущённой задачи

а число нумерует энергетические уровни.

Подставляя (***) в (**), с точностью до членов первого порядка по возмущению получим

Домножая слева на , и учитывая, что — (ортонормированные) собственные функции невозмущённого гамильтониана, получаем

где — матричные элементы возмущения.

Вышеизложенная процедура работает, если невозмущённый уровень невырожден. В противном случае для нахождения поправок первого порядка необходимо решать секулярное уравнение.

Аналогичным образом находятся поправки следующих порядков, хотя формулы сильно усложняются.

Нестационарная теория возмущений

В квантовой теории поля

Большинство вычислений в квантовой теории поля, в частности, в квантовой электродинамике (КЭД), также делаются в рамках теории возмущений. Невозмущённым решением являются свободные поля, а малым параметром — константа взаимодействия (в электродинамике — постоянная тонкой структуры ). Для представления членов ряда теории возмущений в наглядной форме используются диаграммы Фейнмана.

В наше время многие вычисления в КЭД не ограничиваются первым или вторым порядком теории возмущений. Так, аномальный магнитный момент электрона в настоящее время (2015) вычислен до 5-го порядка по [1].

Тем не менее, существует теорема о том, что ряд теории возмущений в КЭД является не сходящимся, а лишь асимптотическим. Это означает, что, начиная с некоторого (на практике — очень большого) порядка теории возмущений согласие между приближённым и точным решением будет уже не улучшаться, а ухудшаться[2].

Примеры неприменимости теории возмущений

Несмотря на свою кажущуюся универсальность, метод теории возмущений не срабатывает в определённом классе задач. Примерами могут являться инстантонные эффекты в ряде задач квантовой механики и квантовой теории поля. Инстантонные вклады обладают существенными особенностями в точке разложения. Типичный пример инстантонного вклада имеет вид:

, где — малый параметр.

Эта функция является неаналитичной в точке , а потому не может быть разложена в ряд Маклорена по .

Примечания

  1. E. de Rafael. Update of the Electron and Muon g-Factors // arXiv:1210.4705 [hep-ph]
  2. Ахиезер А. И., Берестецкий В. Б. Квантовая электродинамика. — М.: Наука, 1981. — С. 210—212.

Литература

Эта страница в последний раз была отредактирована 16 октября 2021 в 20:13.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).