Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

Запрос «Директриса (геометрия)» перенаправляется сюда. На эту тему нужно создать отдельную статью.
Эллипс (e=½), парабола (e=1) и гипербола (e=2) с фиксированными фокусом  F {\displaystyle F}  и директрисой:  F M = e ⋅ M M ′ {\displaystyle FM=e\cdot MM'}
Эллипс (e=½), парабола (e=1) и гипербола (e=2) с фиксированными фокусом и директрисой:

Эксцентрисите́т — числовая характеристика конического сечения, показывающая степень его отклонения от окружности. Обычно обозначается или .

Эксцентриситет инвариантен относительно движений плоскости и преобразований подобия.

Определение

Все невырожденные конические сечения, кроме окружности, можно описать следующим способом: выберем на плоскости точку и прямую и зададим вещественное число ; тогда геометрическое место точек , для которых отношение расстояний до точки и до прямой равно , является коническим сечением; то есть, если есть проекция на , то

.

Это число  называется эксцентриситетом конического сечения. Эксцентриситет окружности по определению равен 0.

Связанные определения

  • Точка называется фокусом конического сечения.
  • Прямая называется директрисой.

Коническое сечение в полярных координатах

Коническое сечение, один из фокусов которого находится в полюсе, задаётся в полярных координатах уравнением:

,

где  — эксцентриситет, а  — другой постоянный параметр (так называемый фокальный параметр).

Легко показать, что это уравнение эквивалентно определению, данному выше. В сущности, оно может быть использовано в качестве альтернативного определения эксцентриситета, быть может, менее фундаментального, но удобного с аналитической и прикладной точек зрения; в частности, из него хорошо видна роль эксцентриситета в классификации конических сечений и определённым образом дополнительно проясняется его геометрический смысл.

Свойства

Эллипсы и гиперболы всех возможных эксцентриситетов (e) от нуля до бесконечности, а также парабола (при y=0), составляющие одну поверхность третьего порядка (являясь её горизонтальными сечениями:  z = const {\displaystyle z={\text{const}}} )
Эллипсы и гиперболы всех возможных эксцентриситетов (e) от нуля до бесконечности, а также парабола (при y=0), составляющие одну поверхность третьего порядка (являясь её горизонтальными сечениями: )
  • В зависимости от эксцентриситета, получится:
    • при  — гипербола. Чем больше эксцентриситет гиперболы, тем больше две её ветви похожи на параллельные прямые линии;
    • при  — парабола;
    • при  — эллипс;
    • для окружности полагают .
  • Эксцентриситет эллипса и гиперболы равен отношению расстояния от фокуса до центра к большой полуоси. Это свойство иногда принимают за определение эксцентриситета. В прежние времена (например, в 1787 году[1]) на большую полуось не делили — эксцентриситетом эллипса называли расстояние от фокуса до центра[2].
  • Эксцентриситет эллипса может быть также выражен через отношение малой () и большой () полуосей:
.
  • Эксцентриситет гиперболы может быть выражен через отношение мнимой () и действительной () полуосей:
.
  • Эксцентриситет равносторонней гиперболы, являющейся графиком обратной пропорциональности и задаваемой уравнением , равен .
  • Для эллипса также может быть выражен через отношение радиусов пери- () и апоцентров ():
.

См. также

Примечания

  1. John Bonnycastle. An Introduction to Astronomy. — London, 1787. — С. 90.
  2. The Oxford English Dictionary (англ.). — 2nd ed. — Oxford: Oxford University Press, 1989. — Vol. V. — P. 50.

Литература

Эта страница в последний раз была отредактирована 29 октября 2020 в 16:00.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).