Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

Чертёж
Чертёж

Теорема Наполеона — утверждение евклидовой планиметрии о равносторонних треугольниках:

Если на каждой стороне произвольного треугольника построить по равностороннему треугольнику, то треугольник с вершинами в центрах равносторонних треугольников — тоже равносторонний

Треугольники могут быть построены внутрь (все) — утверждение сохранит силу.

Получаемый таким образом треугольник называют треугольником Наполеона (внутренним и внешним).

Теорема часто приписывается Наполеону Бонапарту (1769—1821). Возможно, однако, что её предложил У. Резерфорд в публикации 1825 года англ. The Ladies' Diary.[1]

Доказательства

Данная теорема может быть доказана несколькими способами. Один из них использует поворот и теорему Шаля (3 последовательных поворота возвращают плоскость на место). Похожий способ использует поворотную гомотетию (при применении 2 гомотетий с равными коэффициентами MN и LN переходят в один отрезок CZ). Другие способы более прямолинейны, но и более громоздки и сложны.

Центр Наполеона

См. также Точки Наполеона.

Рисунок к параграфу расположен по адресу: http://faculty.evansville.edu/ck6/tcenters/class/xsub17.gif Пусть дан треугольник ABC и пусть D, E, F — точки на рисунке, для которых треугольники DBC, CAE, ABF равносторонние. Далее пусть: G — центр треугольника DBC, H — центр треугольника CAE, I — центр треугольника ABF. Тогда отрезки AG, BH, CI пересекаются в одной точке. Обозначим эту точку буквой N. Это и есть так называемая первая точка Наполеона (the first Napoleon point). Трилинейные координаты для точки N есть: csc(A + π/6): csc(B + π/6): csc(C + π/6). Если равносторонние треугольники DBC, CAE, ABF строятся не наружу а внутрь данного треугольника ABC, тогда три линии AG, BH, CI пересекаются во второй точке Наполеона (the second Napoleon point). Её трилинейные координаты есть: csc(A — π/6): csc(B — π/6): csc(C — π/6).

Замечание

Первая и вторая точки Наполеона в Энциклопедии точек треугольника Кларка Кимберлинга (Clark Kimberling. Encyclopedia of Triangle Centers= http://faculty.evansville.edu/ck6/encyclopedia/) известны как точки X(17) и X(18).

Связь с другими утверждениями

  • Обобщение — теорема Петра-Неймана-Дугласа [2]

Теорема Наполеона обобщается на случай произвольных треугольников следующим образом:

Если подобные треугольники любой формы построены на сторонах треугольника внешним образом так, что каждый повёрнут относительно предыдущего, и любые три соответствующие точки этих треугольников соединены, то итоговый треугольник будет подобен этим внешним треугольникам.

Аналогом теоремы Наполеона для параллелограммов является первая теорема Тебо.

См. также

Ссылки

Эта страница в последний раз была отредактирована 5 декабря 2022 в 09:25.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).