Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Ортогональное дополнение

Из Википедии — свободной энциклопедии

Ортогональное дополнение подпространства векторного пространства с билинейной формой  — это множество всех векторов , ортогональных каждому вектору из . Это множество является векторным подпространством , которое обычно обозначается .

Определение

Пусть  — векторное пространство над полем с билинейной формой . Вектор ортогонален слева вектору , а вектор ортогонален справа вектору тогда и только тогда, когда Левое ортогональное дополнение подпространства  — это множество векторов, ортогональных слева каждому вектору , то есть

Аналогичным образом определяется правое ортогональное дополнение. Для симметричной или кососимметричной билинейной формы поэтому определения левого и правого ортогонального дополнения совпадают.

Определение можно перенести на случай свободного модуля над коммутативным кольцом.[1]

Свойства

  • Ортогональное дополнение является подпространством, то есть замкнуто относительно сложения векторов и умножения на элемент поля.
  • Если , то
  • Радикал билинейной формы является подпространством любого ортогонального дополнения.
  • Если форма является невырожденной, а пространство конечномерно, то
  • Если же  — конечномерное евклидово пространство и  — скалярное произведение (или же унитарное пространство и эрмитово скалярное произведение соответственно), то для любого подпространства разлагается в прямую сумму и [2]

Пример

Пусть  — двумерное пространство с базисом , и матрица билинейной формы в этом базисе имеет вид Тогда ортогональное дополнение подпространства, натянутого на вектор  — это множество таких векторов что Например, ортогональное дополнение пространства, натянутого на вектор , совпадает с ним самим, тогда как ортогональное дополнение натянуто на вектор .

Примечания

  1. Adkins, Weintraub (1992) p.359
  2. Мальцев А. И., Основы линейной алгебры, с.212.

Литература

  • Мальцев А. И. Основы линейной алгебры. — 3-е. — М.: Наука, 1970. — 400 с.
  • Adkins, William A.; Weintraub, Steven H. (1992), Algebra: An Approach via Module Theory, Graduate Texts in Mathematics 136, Springer-Verlag, ISBN 3-540-97839-9, Zbl 0768.00003
  • Halmos, Paul R. (1974), Finite-dimensional vector spaces, Undergraduate Texts in Mathematics, Berlin, New York: Springer-Verlag, ISBN 978-0-387-90093-3, Zbl 0288.15002
Эта страница в последний раз была отредактирована 13 июня 2014 в 13:04.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).