Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

Ортогона́льность (от греч. ὀρθογώνιος — прямоугольный) — свойство, обобщающее понятие перпендикулярности на произвольные линейные пространства с введённым скалярным произведением: если скалярное произведение двух элементов пространства равно нулю, то они называются ортогональными друг другу. Термин впервые использовался у Евклида.

Важной особенностью понятия является его привязка к конкретному используемому скалярному произведению: при смене произведения ортогональные элементы могут стать неортогональными, и наоборот.

Два линейных пространства ортогональны, если каждый элемент одного из них ортогонален любому элементу из другого. Это определение позволяет говорить о перепендикулярности двух прямых или прямой и плоскости в трёхмерном пространстве как об ортогональности (но не перпендикулярности двух плоскостей).

Ортогональная система — множество элементов, попарно ортогональных друг другу; каждую ортогональную систему можно преобразовать в ортонормированную — в которой каждый элемент приведён к единичной норме (во всех пространствах со скалярным произведением можно ввести норму). Ортогональная (ортономированная) система со свойством полноты образует ортогональный (ортонормированный) базис. Ортогональная матрица — матрица, столбцы которой образуют ортогональный базис.

Ортогональное преобразование — линейное преобразование, сохраняющее скалярное произведение; ортогональные преобразования заданного векторного пространства образуют ортогональную группу.

Энциклопедичный YouTube

  • 1/3
    Просмотров:
    11 311
    3 140
    18 929
  • Ортогональность. Тема
  • Ортогональность
  • A.7.4 Ортогонализация набора векторов. Процесс Грама-Шмидта.

Субтитры

Литература

  • Гельфанд И. М. Лекции по линейной алгебре. — 5-е, исправленное. — М.: Добросвет, МЦНМО, 1998. — 320 с. — 5000 экз. экз. — ISBN 5-7913-0015-8.
  • Стренг Г. Линейная алгебра и её применения = Linear Algebra and Its Applications. — М.: Мир, 1980. — 454 с.
Эта страница в последний раз была отредактирована 27 июня 2024 в 14:15.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).