Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

Магма (группоид) в общей алгебре — алгебра, состоящая из множества М с одной бинарной операцией M × MM. Помимо требования замкнутости множества относительно заданной на нём операции, других требований к операции и множеству не предъявляется.

Термин «магма» был предложен Бурбаки. Термин «группоид» старше, он предложен Ойстином Оре, однако этот термин также относится к другой общеалгебраической структуре — теоретико-категорному группоиду, и в более современной литературе чаще используется в этом смысле.

Типы магм

Группа и связанные с ней простейшие алгебраические структуры
Группа и связанные с ней простейшие алгебраические структуры

Как таковые магмы обычно не изучаются; вместо этого изучаются различные типы магм, отличающиеся дополнительно вводимыми аксиомами. Обычно изучаемые типы магм включают следующие:

Морфизм магм

Морфизм магм — это функция , соотносящая магме магму , которая сохраняет бинарную операцию:

где и обозначают бинарные операции на и на соответственно.

Комбинаторика и скобки

Для общего, неассоциативного случая, операция магмы может быть многократно повторена. Для обозначения порядка используются скобки. Результирующая строка состоит из символов, обозначающих элементы магмы и сбалансированных скобок. Множество всех возможных строк сбалансированных скобок называется языком Дика. Общее число различных способов записи n применений оператора магмы определяется числом Каталана . Так например, , что эквивалентно утверждению, что и  — единственно возможные способы определения порядка применения двух операций магмы, включающей множество из трёх элементов.

Для упрощения записи и сокращения числа используемых скобок используется условное обозначение. Для того, чтобы обозначить более высокий приоритет у выполнения операции используют запись рядом. Например, если операция магмы «·», то xy·z — сокращённая запись (x · y) · z. Дальнейшие сокращения возможны за счёт использования пробелов. Например, записывая xy·z · wv вместо ((x · y) · z) · (w · v). Разумеется, для более сложных выражений отказ от использования скобок нежизнеспособен. Способом избежать использования скобок является префиксная запись, которая, однако, неинтуитивна.

См. также

Литература

  • Куликов Л. Я. Алгебра и теория чисел. — М.: Высшая школа, 1979. — 559 с.
Эта страница в последний раз была отредактирована 19 мая 2021 в 13:23.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).