Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Альтернативы
Недавние
Show all languages
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

Лемма Гордана — лемма из области выпуклой геометрии и алгебраической геометрии. У неё есть несколько равносильных формулировок:

Лемма названа в честь математика П. А. Гордана (1837—1912).

Доказательства

Геометрическое доказательство

Пример конуса в двумерном пространстве, порождённого векторами и . Эти же векторы порождают моноид целых точек в конусе.
Пример конуса в двумерном пространстве, порождённого векторами и . Вектор не выражается, как целочисленная комбинация этих векторов, но конечный набор порождает моноид целых точек в конусе.

Пусть дан выпуклый рациональный полиэдральный конус , порождаемый векторами как конус. Пусть  — полугруппа целых точек в данном конусе, то есть

где  — размерность пространства, в котором лежит конус . Тогда произвольную точку можно представить в виде

где неотрицательные коэффициенты при разложены в сумму неотрицательного целого и дробной части . Но так как и первая сумма целочисленны, вторая сумма тоже обязана быть вектором целочисленной решётки. При этом вторая сумма находится в ограниченной области, зависящей только от векторов , но не от вектора , поэтому для неё есть лишь конечное число возможностей. Таким образом, конечно порождена[3].

Алгебраическое доказательство

Доказательство[4] основано на том, что полугруппа конечно порождена тогда и только тогда, когда её полугрупповая алгебра[англ.] является конечно порождённой алгеброй над .

Докажем сперва вспомогательную лемму о градуированных алгебрах.

Лемма: Пусть  — нётерово -градуированное кольцо. Тогда  — конечно-порождённая алгебра над .

Доказательство леммы: пусть  — идеал в , порождённый всеми однородными элементами положительной степени. В силу нётеровости идеал порождён конечным числом однородных элементов положительной степени . Пусть максимальная из степеней элементов равна . Если  — однородный элемент положительной степени, которая больше степеней всех , то он представляется в виде . Можно от каждого рассмотреть только однородную компоненту степени , получив равенство , где  — однородные элементы положительной степени, причём эта степень будет строго меньше . Таким образом, применив индукцию по степени , легко видеть, что порождается как -алгебра. Осталось показать, что конечно порождена как -алгебра, для чего достаточно показать, что каждый  — конечно-порождённый -модуль. Действительно, пусть дана возрастающая цепочка вложенных конечно-порождённых подмодулей в , объединение которой равно всему . Можно рассмотреть цепочку идеалов . По нётеровости она стабилизируется на некотором шаге, значит стабилизируется и [4].

Теперь докажем, что для любого подмоноида выполнено следующее утверждение:

Если конечно порождён (как моноид), то и для произвольного целочисленного вектора , лежащего в двойственной решётке к решётке, в которой лежит моноид, подмоноид  также конечно порождён.

Действительно, рассмотрим алгебру , пусть её базис есть . На ней можно ввести -градуировку:

.

По предположению конечно порождена, а значит нётерова. Тогда из доказанной леммы следует, что  — конечно порождённая алгебра над . Полугруппа  лежит в подпространстве меньшей размерности, поэтому можно считать при помощи индукции по размерности, что она тоже конечно порождена, а значит и алгебра конечно порождена. Таким образом, конечно порождён[4].

Наконец, из доказанного утверждения следует лемма Гордана. Действительно, можно рассмотреть в качестве всю целочисленную решётку и применять лемму к каждой гиперплоскости, задающей грань максимальной размерности полиэдрального конуса, пока не останется моноид целочисленных точек внутри конуса[4].

Применения

Аффинные торические многообразия

В стандартном определении аффинного торического многообразия по решётке и выпуклому рациональному полиэдральному конусу в пространстве, соответствующем решётке, строится полугруппа , по ней алгебра и рассматривается её спектр. Из леммы Гордана следует корректность этого определения: полученная алгебра конечно порождена, то есть действительно задаёт аффинное многообразие как свой спектр[5].

Максимальная степень неразложимого мультигиперграфа

Мультигиперграф с множеством вершин — это мультимножество подмножеств . Мультигиперграф называется регулярным, если у всех вершин одинаковая степень. Мультигиперграф называется разложимым, если у него можно выбрать собственное непустое подмультимножество рёбер так, что мультигиперграф тоже регулярен для некоторой степени . Для натурального обозначим через максимальную степень неразложимого мультигиперграфа на вершинах. Из леммы Гордана следует, что конечно[2].

Доказательство: для каждого подмножества вершин определим переменную (принимающую неотрицательные целые значения). Добавим также ещё одну переменную (тоже принимающую неотрицательные целые значения). Рассмотрим набор из уравнений (по одному уравнению на каждую вершину):

Каждое решение задаёт регулярный мультигиперграф с множеством вершин : задаёт кратности соответствующих гиперрёбер, а задаёт степень вершин. По лемме Гордана множество решений порождается конечным набором решений, то есть существует конечный набор мультигиперграфов таких, что каждый регулярный мультигиперграф — это линейная комбинация некоторых элементов . Все неразложимые мультигиперграфы должны лежать в , то есть их множество конечно[2].

Примечания

  1. David A. Cox, Lectures on toric varieties Архивная копия от 6 мая 2021 на Wayback Machine. Lecture 1. Proposition 1.11.
  2. 1 2 3 Alon, N.; Berman, K. A. (1986-09-01). "Regular hypergraphs, Gordon's lemma, Steinitz' lemma and invariant theory". Journal of Combinatorial Theory, Series A. 43 (1): 91—97. doi:10.1016/0097-3165(86)90026-9. ISSN 0097-3165. Архивировано 31 августа 2021. Дата обращения: 16 августа 2021.
  3. CLS, 2011, Proposition 1.2.17.
  4. 1 2 3 4 BG, 2009, Lemma 4.12
  5. CLS, 2011, pp. 52-53.

Литература

  • David A. Cox, John B. Little, Hal Schenck. Toric varieties (англ.). — American Mathematical Soc., 2011. — P. 841. — (Graduate studies in mathematics). — ISBN 9780821848197.
  • Winfried Bruns, Joseph Gubeladze. Polytopes, rings, and K-theory (англ.). — Springer, 2009. — (Springer Monographs in Mathematics). — doi:10.1007/b105283.
Эта страница в последний раз была отредактирована 16 декабря 2023 в 21:24.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).