Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Градуированная алгебра

Из Википедии — свободной энциклопедии

Градуированная алгебраалгебра , разложенная в прямую сумму своих подпространств таким способом, что выполняется условие .[1][2]

Определение

Пусть A — алгебра над кольцом k, G — полугруппа.

Алгебра A называется G-градуированной (синоним: на A задана G-градуировка), если A разлагается в прямую сумму k-модулей по всем элементам g из G, причём умножение в алгебре согласовано с умножением в полугруппе:

Если ненулевой элемент a принадлежит , то он называется однородным степени g.

Когда в качестве G берут аддитивную группу целых чисел или полугруппу целых неотрицательных чисел, алгебру A называют просто градуированной.

Если в качестве A в определении выше взять кольцо, то получится определение градуированного кольца.

Конструкции с градуировками

  • Если A — G-градуированная алгебра, а  — гомоморфизм полугрупп, тогда A наделяется H-градуировкой по правилу:
  • На любой алгебре A можно ввести тривиальную градуировку любой полугруппой G с единицей e, полагая , поэтому такие «бедные» градуировки рассматривать не имеет смысла.
  • Над полем любая алгебра A градуируется группой G характеров максимального тора своей группы алгебраических автоморфизмов:
    для всякого
Эта градуировка, в вышеопределённом смысле, — «самая богатая» из всех абелевых градуировок алгебры A, поскольку на любой G-градуированной алгебре A группа характеров G действует автоморфизмами, по той же формуле.

Примеры

Градуированный модуль

Соответствующее понятие в теории модулей — градуированный модуль, а именно, левый модуль M над градуированным кольцом A, такой, что

и

Морфизм градуированных модулей  — это морфизм модулей, который сохраняет градуировку, то есть .

Для градуированного модуля M можно определить -подкрутку как градуированный модуль, определённый правилом . (См. скручивающий пучок Серра в алгебраической геометрии.)

Пусть M и N — градуированные модули. Если  — морфизм модулей, то говорят, что f имеет степень d, если . Внешняя производная дифференциальной формы в дифференциальной геометрии — это пример морфизма степени 1.

Литература

  • C. Nastasescu, F. Van Oystaeyen. Graded Ring Theory. — Amsterdam: North-Holland, 1982. — ISBN 9780444864895.

Примечания

  1. Данная градуированная алгебра называется также -градуированной.
  2. Математический энциклопедический словарь / Гл. ред. Ю. В. Прохоров; Ред. кол.: С. И. Адян, Н. С. Бахвалов, В. И. Битюцков, А. П. Ершов, Л. Д. Кудрявцев, А. Л. Онищик, А. П. Юшкевич. — М.: Сов. энциклопедия, 1988. — С. 161. — 847 с. — 150 000 экз.
Эта страница в последний раз была отредактирована 28 мая 2023 в 20:06.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).