Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Альтернативы
Недавние
Show all languages
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Граф Хоффмана — Синглтона

Из Википедии — свободной энциклопедии

Граф Хоффмана — Синглтона. Подграф с синими рёбрами является суммой десяти непересекающихся пентагонов.

Граф Хоффмана — Синглтона — 7-однородный неориентированный граф с 50 вершинами и 175 рёбрами. Граф является единственным сильно регулярным графом с параметрами [5]. Граф был построен Аланом Хоффманом и Робертом Синглтоном, когда они пытались классифицировать все графы Мура, и он является графом Мура с наибольшим порядком, для которого известно, что такой граф существует[6]. Поскольку граф является графом Мура, в котором каждая вершина имеет степень 7, а обхват графа равен 5, граф является клеткой .

Построение

Существует много путей построения графов Хоффмана — Синглтона.

Построение на основе пятиугольников и пентаграмм

Возьмём 5 пятиугольников и 5 пентаграмм так, что вершина пятиугольника смежна вершинам и пятиугольника и вершина пентаграммы смежна вершинам и пентаграммы . Свяжем вершину графа с вершиной графа . (Все индексы берутся по модулю 5.)

Построение из троек и плоскостей Фано

Возьмём плоскость Фано и рассмотрим переставки её 7 точек, чтобы получить 30 плоскостей Фано. Выберем одну из этих плоскостей. Имеется 14 других плоскостей Фано, имеющих в точности одну общую тройку («прямую») с выбранной плоскостью. Возьмём эти 15 плоскостей Фано и отбросим оставшиеся 15. Рассмотрим 7C3 = 35 троек из 7 чисел. Теперь соединим (ребром) тройку с плоскостями Фано, содержащими эту тройку, а также соединим непересекающиеся тройки друг с другом. Получившийся граф является графом Хоффмана — Синглтона, он состоит из 50 вершин, соответствующих 35 тройкам и 15 плоскостям Фано, и каждая вершина имеет степень 7. Вершины, соответствующие плоскостям Фано, соединены с 7 тройками по определению, поскольку плоскость Фано имеет 7 прямых. Каждая тройка связана с 3 различными плоскостями Фано, включающими её, и с 4 другими тройками, с которыми она не пересекается.

Алгебраические свойства

Группа автоморфизмов графа Хоффмана — Синглтона является группой порядка 252000 и изоморфна PΣU(3,52), полупрямому произведению проективной специальной унитарной группы  (англ.) и циклической группы порядка 2, сгенерировнной эндоморфизмом Фробениуса. Автоморфизм действует транзитивно на вершины и рёбра графа. Таким образом, граф Хоффмана — Синглтона является симметричным графом. Стабилизатор вершин графа изоморфен симметрической группе на 7 буквах. Стабилизатор множества рёбер изоморфен , где  — знакопеременная группа на 6 буквах. Оба типа стабилизаторов являются максимальными подгруппами полной группы автоморфизмов графа Хоффмана — Синглтона.

 Характеристический многочлен графа Хоффмана — Синглтона равен . Таким образом, граф Хоффмана — Синглтона является целочисленным — его спектр состоит полностью из целых чисел.

Подграфы

Используя только факт, что граф Хоффмана — Синглтона является строго регулярным с параметрами , можно показать, что в нём существует 1260 циклов длины 5.

Кроме того, граф Хоффмана — Синглтона содержит 525 копий графа Петерсена. Удаление одного из них даёт копию единственной -клетки[7].

См. также

Примечания

  1. 1 2 Weisstein, Eric W. Hoffman-Singleton Graph (англ.) на сайте Wolfram MathWorld.
  2. Hafner, 2003, с. 7-12.
  3. Royle.
  4. Conder, Stokes, 2014.
  5. Brouwer.
  6. Hoffman, Singleton, 1960, с. 497–504.
  7. Wong, 1979, с. 407–409.

Литература

  • P. R. Hafner. The Hoffman-Singleton Graph and Its Automorphisms // J. Algebraic Combin. — 2003. — Т. 18.
  • G. Royle. Re: What is the Edge Chromatic Number of Hoffman-Singleton? [email protected] posting. (28 сентября 2004). (недоступная ссылка)
  • M.D.E. Conder, K. Stokes. Minimum genus embeddings of the Hoffman-Singleton graph // preprint. — 2014.
  • C. T. Benson, N. E. Losey. On a graph of Hoffman and Singleton // Journal of Combinatorial Theory. Series B. — Т. 11, вып. 1. — С. 67–79. — ISSN 0095-8956. — doi:10.1016/0095-8956(71)90015-3.
  • D.A. Holton, J. Sheehan. The Petersen graph. — Cambridge University Press, 1993. — С. 186, 190. — ISBN 0-521-43594-3..
  • Andries E. Brouwer. Hoffman-Singleton graph. Дата обращения: 7 сентября 2016. Архивировано 3 марта 2016 года.
  • Alan J. Hoffman, Robert R. Singleton. Moore graphs with diameter 2 and 3 // IBM Journal of Research and Development. — 1960. — Т. 5, вып. 4. — С. 497–504. — doi:10.1147/rd.45.0497.
  • Pak-Ken Wong. On the uniqueness of the smallest graph of girth 5 and valency 6 // Journal of Graph Theory. — 1979. — Т. 3. — С. 407–409. — doi:10.1002/jgt.3190030413.
Эта страница в последний раз была отредактирована 16 февраля 2024 в 15:10.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).