Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

Автоморфизм алгебраической системы — изоморфизм, отображающий алгебраическую систему на себя.

Совокупность всех автоморфизмов некоторой алгебраической системы с операцией композиции и тождественным отображением в качестве нейтрального элемента образует группу. Группа автоморфизмов алгебраической системы обозначается .

Наиболее простой пример автоморфизма — это автоморфизм множества, то есть перестановка элементов этого множества.

Понятие автоморфизма можно обобщить на более абстрактные объекты, не являющиеся «множествами с дополнительной структурой». Так, в теории категорий автоморфизм определяется как эндоморфизм, являющийся также изоморфизмом (в категорном смысле этого слова).

Родственные понятия из метрической геометрииизометрия метрического пространства в себя и группа симметрии.

Энциклопедичный YouTube

  • 1/3
    Просмотров:
    1 009
    8 859
    8 272
  • 04 - Основы теории графов. Изоморфизм и автоморфизм графов
  • Group Automorphisms Part 1
  • Graph Theory FAQs: 02. Graph Automorphisms

Субтитры

См. также

Примечания

Литература

Эта страница в последний раз была отредактирована 12 апреля 2020 в 22:27.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).