Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Симметрическая группа

Из Википедии — свободной энциклопедии

Граф Кэли симметрической группы S4
Таблица Кэли симметрической группы S3
(таблица умножения матриц перестановок)

Имеются следующие позиции шести матриц:
Таблица несимметрична относительно главной диагонали, то есть группа не абелева.

Симметрическая группа — группа всех перестановок заданного множества (то есть биекций ) относительно операции композиции.

Симметрическая группа множества обычно обозначается . Если , то также обозначается через . Поскольку для равномощных множеств () изоморфны и их группы перестановок (), то для конечной группы порядка группу её перестановок отождествляют с .

Нейтральным элементом в симметрической группе является тождественная перестановка .

Группы перестановок

Хотя обычно группой перестановок (или подстановок) называют саму симметрическую группу, иногда, особенно в англоязычной литературе, группами перестановок множества называют подгруппы симметрической группы [1]. Степенью группы в таком случае называется мощность .

Каждая конечная группа изоморфна некоторой подгруппе группы (теорема Кэли).

Свойства

Число элементов симметрической группы для конечного множества равно числу перестановок элементов, то есть факториалу мощности: . При симметрическая группа некоммутативна.

Симметрическая группа допускает следующее задание:

.

Можно считать, что переставляет и . Максимальный порядок элементов группы  — функция Ландау.

Группы разрешимы, при симметрическая группа является неразрешимой.

Симметрическая группа является совершенной (то есть отображение сопряжения является изоморфизмом) тогда и только тогда, когда её порядок отличен от 2 и 6 (теорема Гёльдера). В случае группа имеет ещё один внешний автоморфизм[en]. В силу этого и предыдущего свойства при все автоморфизмы являются внутренними, то есть каждый автоморфизм имеет вид для некоторого .

Число классов сопряжённых элементов симметрической группы равно числу разбиений числа [2]. Множество транспозиций является порождающим множеством . С другой стороны, все эти транспозиции порождаются всего двумя перестановками , так что минимальное число образующих симметрической группы равно двум.

Центр симметрической группы тривиален при . Коммутантом является знакопеременная группа ; причём при  — единственная нетривиальная нормальная подгруппа , а имеет ещё одну нормальную подгруппу — четверную группу Клейна.

Представления

Любая подгруппа группы перестановок представима группой матриц из , при этом каждой перестановке соответствует перестановочная матрица (матрица, у которой все элементы в ячейках равны 1, а прочие элементы равны нулю); например, перестановка представляется следующей матрицей :

Подгруппа такой группы, составленная из матриц с определителем, равным 1, изоморфна знакопеременной группе .

Существуют и другие представления симметрических групп, например, группа симметрии (состоящая из вращений и отражений) додекаэдра изоморфна , а группа вращений куба изоморфна .

См. также

Примечания

  1. Айгнер М. Комбинаторная теория. М.: Мир, 1982. — 561 с.
  2. последовательность A000041 в OEIS

Литература

  • Винберг Э. Б. Курс алгебры. — М.: Факториал-Пресс, 2001.
  • Каргаполов М. И, Мерзляков Ю.И. Основы теории групп. — М.: Наука, Физматлит, 1982.
  • Кострикин А. И. Введение в алгебру. Часть III. Основные структуры. — М. издательство=Физматлит, 2004.
  • Курош А. Г. Теория групп. — М.: Наука, Физматлит, 1967.
  • Постников М. М. Теория Галуа. — М.: Физматлит, 1963.
Эта страница в последний раз была отредактирована 24 апреля 2023 в 13:48.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).