Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Асимптотическая плотность

Из Википедии — свободной энциклопедии

В теории чисел асимптотическая плотность — это одна из характеристик, помогающих оценить, насколько велико подмножество множества натуральных чисел .

Интуитивно мы ощущаем, что нечётных чисел «больше», чем квадратов; однако множество нечётных чисел в действительности не «больше» множества квадратов: оба множества бесконечны и счётны, и, таким образом, могут быть приведены в соответствие «один к одному» друг с другом. Очевидно, чтобы формализовать наше интуитивное понятие, нам нужен лучший способ.

Если мы случайным образом выберем число из множества , то вероятность того, что оно принадлежит A, будет равна отношению количества элементов множества к числу n. Если эта вероятность стремится к некоторому пределу при стремлении n к бесконечности, этот предел называют асимптотической плотностью A. Мы видим, что это понятие может рассматриваться как вероятность выбора числа из множества A. Действительно, асимптотическая плотность (также, как и некоторые другие виды плотности) изучается в вероятностной теории чисел[en] (англ. Probabilistic number theory).

Асимптотическая плотность отличается, например, от плотности последовательности. Отрицательной стороной такого подхода является то, что асимптотическая плотность определена не для всех подмножеств .

Определение

Подмножество положительных  чисел имеет асимптотическую плотность , где , если предел отношения числа элементов , не превосходящих , к при существует и равен .

Более строго, если мы определим для любого натурального числа подсчитывающую функцию как число элементов , не превосходящих , то равенство асимптотической плотности множества числу в точности означает, что

.

Верхняя и нижняя асимптотическая плотности

Пусть  — подмножество множества натуральных чисел Для любого положим и .

Определим верхнюю асимптотическую плотность множества как

где lim sup — частичный предел последовательности. также известно как верхняя плотность

Аналогично определим , нижнюю асимптотическую плотность как

Будем говорить, имеет асимптотическую плотность , если . В данном случае будем полагать

Данное определение можно переформулировать:

если предел существует и конечен.

Несколько более слабое понятие плотности = верхняя плотность Банаха; возьмем , определим как

Если мы запишем подмножество как возрастающую последовательность

то

и если предел существует.

Примеры

  • Очевидно, d() = 1.
  • Если для некоторого множества A существует d(A), то для его дополнения имеем d(Ac) = 1 — d(A).
  • Для любого конечного множества положительных чисел F имеем d(F) = 0.
  • Если  — множество всех квадратов, то d(A) = 0.
  • Если  — множество всех четных чисел, тогда d(A) = ½. Аналогично, для любой арифметической прогрессии получаем d(A) = 1/a.
  • Множество всех бесквадратных чисел имеет плотность
  • Плотность множества избыточных чисел находится между 0.2474 и 0.2480.
  • Множество чисел, чьё двоичное представление содержит нечетное число цифр, — пример множества, не обладающего асимптотической плотностью, так как верхняя плотность равна
в то время, как нижняя

Ссылки

Эта страница в последний раз была отредактирована 19 апреля 2023 в 19:18.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).