To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Snub polyhedron

From Wikipedia, the free encyclopedia

Polyhedron
Class Number and properties
Platonic solids
(5, convex, regular)
Archimedean solids
(13, convex, uniform)
Kepler–Poinsot polyhedra
(4, regular, non-convex)
Uniform polyhedra
(75, uniform)
Prismatoid:
prisms, antiprisms etc.
(4 infinite uniform classes)
Polyhedra tilings (11 regular, in the plane)
Quasi-regular polyhedra
(8)
Johnson solids (92, convex, non-uniform)
Pyramids and Bipyramids (infinite)
Stellations Stellations
Polyhedral compounds (5 regular)
Deltahedra (Deltahedra,
equilateral triangle faces)
Snub polyhedra
(12 uniform, not mirror image)
Zonohedron (Zonohedra,
faces have 180°symmetry)
Dual polyhedron
Self-dual polyhedron (infinite)
Catalan solid (13, Archimedean dual)


In geometry, a snub polyhedron is a polyhedron obtained by performing a snub operation: alternating a corresponding omnitruncated or truncated polyhedron, depending on the definition. Some, but not all, authors include antiprisms as snub polyhedra, as they are obtained by this construction from a degenerate "polyhedron" with only two faces (a dihedron).

Chiral snub polyhedra do not always have reflection symmetry and hence sometimes have two enantiomorphous (left- and right-handed) forms which are reflections of each other. Their symmetry groups are all point groups.

For example, the snub cube:

Snub polyhedra have Wythoff symbol | p q r and by extension, vertex configuration 3.p.3.q.3.r. Retrosnub polyhedra (a subset of the snub polyhedron, containing the great icosahedron, small retrosnub icosicosidodecahedron, and great retrosnub icosidodecahedron) still have this form of Wythoff symbol, but their vertex configurations are instead

List of snub polyhedra

Uniform

There are 12 uniform snub polyhedra, not including the antiprisms, the icosahedron as a snub tetrahedron, the great icosahedron as a retrosnub tetrahedron and the great disnub dirhombidodecahedron, also known as Skilling's figure.

When the Schwarz triangle of the snub polyhedron is isosceles, the snub polyhedron is not chiral. This is the case for the antiprisms, the icosahedron, the great icosahedron, the small snub icosicosidodecahedron, and the small retrosnub icosicosidodecahedron.

In the pictures of the snub derivation (showing a distorted snub polyhedron, topologically identical to the uniform version, arrived at from geometrically alternating the parent uniform omnitruncated polyhedron) where green is not present, the faces derived from alternation are coloured red and yellow, while the snub triangles are blue. Where green is present (only for the snub icosidodecadodecahedron and great snub dodecicosidodecahedron), the faces derived from alternation are red, yellow, and blue, while the snub triangles are green.

Snub polyhedron Image Original omnitruncated polyhedron Image Snub derivation Symmetry group Wythoff symbol
Vertex description
Icosahedron (snub tetrahedron)
Truncated octahedron
Ih (Th) | 3 3 2
3.3.3.3.3
Great icosahedron (retrosnub tetrahedron)
Truncated octahedron
Ih (Th) | 2 3/2 3/2
(3.3.3.3.3)/2
Snub cube
or snub cuboctahedron
Truncated cuboctahedron
O | 4 3 2
3.3.3.3.4
Snub dodecahedron
or snub icosidodecahedron
Truncated icosidodecahedron
I | 5 3 2
3.3.3.3.5
Small snub icosicosidodecahedron
Doubly covered truncated icosahedron
Ih | 3 3 5/2
3.3.3.3.3.5/2
Snub dodecadodecahedron
Small rhombidodecahedron with extra 12{10/2} faces
I | 5 5/2 2
3.3.5/2.3.5
Snub icosidodecadodecahedron
Icositruncated dodecadodecahedron
I | 5 3 5/3
3.5/3.3.3.3.5
Great snub icosidodecahedron
Rhombicosahedron with extra 12{10/2} faces
I | 3 5/2 2
3.3.5/2.3.3
Inverted snub dodecadodecahedron
Truncated dodecadodecahedron
I | 5 2 5/3
3.5/3.3.3.3.5
Great snub dodecicosidodecahedron
Great dodecicosahedron with extra 12{10/2} faces
no image yet I | 3 5/2 5/3
3.5/3.3.5/2.3.3
Great inverted snub icosidodecahedron
Great truncated icosidodecahedron
I | 3 2 5/3
3.5/3.3.3.3
Small retrosnub icosicosidodecahedron
Doubly covered truncated icosahedron
no image yet Ih | 5/2 3/2 3/2
(3.3.3.3.3.5/2)/2
Great retrosnub icosidodecahedron
Great rhombidodecahedron with extra 20{6/2} faces
no image yet I | 2 5/3 3/2
(3.3.3.5/2.3)/2
Great dirhombicosidodecahedron
Ih | 3/2 5/3 3 5/2
(4.3/2.4.5/3.4.3.4.5/2)/2
Great disnub dirhombidodecahedron
Ih | (3/2) 5/3 (3) 5/2
(3/2.3/2.3/2.4.5/3.4.3.3.3.4.5/2.4)/2

Notes:

There is also the infinite set of antiprisms. They are formed from prisms, which are truncated hosohedra, degenerate regular polyhedra. Those up to hexagonal are listed below. In the pictures showing the snub derivation, the faces derived from alternation (of the prism bases) are coloured red, and the snub triangles are coloured yellow. The exception is the tetrahedron, for which all the faces are derived as red snub triangles, as alternating the square bases of the cube results in degenerate digons as faces.

Snub polyhedron Image Original omnitruncated polyhedron Image Snub derivation Symmetry group Wythoff symbol
Vertex description
Tetrahedron
Cube
Td (D2d) | 2 2 2
3.3.3
Octahedron
Hexagonal prism
Oh (D3d) | 3 2 2
3.3.3.3
Square antiprism
Octagonal prism
D4d | 4 2 2
3.4.3.3
Pentagonal antiprism
Decagonal prism
D5d | 5 2 2
3.5.3.3
Pentagrammic antiprism
Doubly covered pentagonal prism
D5h | 5/2 2 2
3.5/2.3.3
Pentagrammic crossed-antiprism
Decagrammic prism
D5d | 2 2 5/3
3.5/3.3.3
Hexagonal antiprism
Dodecagonal prism
D6d | 6 2 2
3.6.3.3

Notes:

Non-uniform

Two Johnson solids are snub polyhedra: the snub disphenoid and the snub square antiprism. Neither is chiral.

Snub polyhedron Image Original polyhedron Image Symmetry group
Snub disphenoid
Disphenoid
D2d
Snub square antiprism
Square antiprism
D4d

References

  • Coxeter, Harold Scott MacDonald; Longuet-Higgins, M. S.; Miller, J. C. P. (1954), "Uniform polyhedra", Philosophical Transactions of the Royal Society of London. Series A. Mathematical and Physical Sciences, 246 (916): 401–450, doi:10.1098/rsta.1954.0003, ISSN 0080-4614, JSTOR 91532, MR 0062446, S2CID 202575183
  • Wenninger, Magnus (1974). Polyhedron Models. Cambridge University Press. ISBN 0-521-09859-9.
  • Skilling, J. (1975), "The complete set of uniform polyhedra", Philosophical Transactions of the Royal Society of London. Series A. Mathematical and Physical Sciences, 278 (1278): 111–135, doi:10.1098/rsta.1975.0022, ISSN 0080-4614, JSTOR 74475, MR 0365333, S2CID 122634260
  • Mäder, R. E. Uniform Polyhedra. Mathematica J. 3, 48-57, 1993.
Polyhedron operators
Seed Truncation Rectification Bitruncation Dual Expansion Omnitruncation Alternations
t0{p,q}
{p,q}
t01{p,q}
t{p,q}
t1{p,q}
r{p,q}
t12{p,q}
2t{p,q}
t2{p,q}
2r{p,q}
t02{p,q}
rr{p,q}
t012{p,q}
tr{p,q}
ht0{p,q}
h{q,p}
ht12{p,q}
s{q,p}
ht012{p,q}
sr{p,q}
This page was last edited on 25 August 2022, at 16:06
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.