To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Skew-Hermitian matrix

From Wikipedia, the free encyclopedia

In linear algebra, a square matrix with complex entries is said to be skew-Hermitian or anti-Hermitian if its conjugate transpose is the negative of the original matrix.[1] That is, the matrix is skew-Hermitian if it satisfies the relation

where denotes the conjugate transpose of the matrix . In component form, this means that

for all indices and , where is the element in the -th row and -th column of , and the overline denotes complex conjugation.

Skew-Hermitian matrices can be understood as the complex versions of real skew-symmetric matrices, or as the matrix analogue of the purely imaginary numbers.[2] The set of all skew-Hermitian matrices forms the Lie algebra, which corresponds to the Lie group U(n). The concept can be generalized to include linear transformations of any complex vector space with a sesquilinear norm.

Note that the adjoint of an operator depends on the scalar product considered on the dimensional complex or real space . If denotes the scalar product on , then saying is skew-adjoint means that for all one has .

Imaginary numbers can be thought of as skew-adjoint (since they are like matrices), whereas real numbers correspond to self-adjoint operators.

YouTube Encyclopedic

  • 1/3
    Views:
    716
    2 793
    474
  • A Brief Explanation on Symmetric and Skew Symmetric Matrix with examples | Matrix Algebra
  • 864. Expression of a square Matrix as a sum of a symmetric matrix and a skew symmetric Matrix
  • Orthogonal Matrix with It's Definition, Properties & Example | Matrix Algebra

Transcription

Example

For example, the following matrix is skew-Hermitian

because

Properties

  • The eigenvalues of a skew-Hermitian matrix are all purely imaginary (and possibly zero). Furthermore, skew-Hermitian matrices are normal. Hence they are diagonalizable and their eigenvectors for distinct eigenvalues must be orthogonal.[3]
  • All entries on the main diagonal of a skew-Hermitian matrix have to be pure imaginary; i.e., on the imaginary axis (the number zero is also considered purely imaginary).[4]
  • If and are skew-Hermitian, then is skew-Hermitian for all real scalars and .[5]
  • is skew-Hermitian if and only if (or equivalently, ) is Hermitian.[5]
  • is skew-Hermitian if and only if the real part is skew-symmetric and the imaginary part is symmetric.
  • If is skew-Hermitian, then is Hermitian if is an even integer and skew-Hermitian if is an odd integer.
  • is skew-Hermitian if and only if for all vectors .
  • If is skew-Hermitian, then the matrix exponential is unitary.
  • The space of skew-Hermitian matrices forms the Lie algebra of the Lie group .

Decomposition into Hermitian and skew-Hermitian

  • The sum of a square matrix and its conjugate transpose is Hermitian.
  • The difference of a square matrix and its conjugate transpose is skew-Hermitian. This implies that the commutator of two Hermitian matrices is skew-Hermitian.
  • An arbitrary square matrix can be written as the sum of a Hermitian matrix and a skew-Hermitian matrix :

See also

Notes

References

  • Horn, Roger A.; Johnson, Charles R. (1985), Matrix Analysis, Cambridge University Press, ISBN 978-0-521-38632-6.
  • Meyer, Carl D. (2000), Matrix Analysis and Applied Linear Algebra, SIAM, ISBN 978-0-89871-454-8.
This page was last edited on 16 April 2024, at 04:22
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.