To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Bivector (complex)

From Wikipedia, the free encyclopedia

In mathematics, a bivector is the vector part of a biquaternion. For biquaternion q = w + xi + yj + zk, w is called the biscalar and xi + yj + zk is its bivector part. The coordinates w, x, y, z are complex numbers with imaginary unit h:

A bivector may be written as the sum of real and imaginary parts:

where and are vectors. Thus the bivector [1]

The Lie algebra of the Lorentz group is expressed by bivectors. In particular, if r1 and r2 are right versors so that , then the biquaternion curve {exp θr1 : θR} traces over and over the unit circle in the plane {x + yr1 : x, yR}. Such a circle corresponds to the space rotation parameters of the Lorentz group.

Now (hr2)2 = (−1)(−1) = +1, and the biquaternion curve {exp θ(hr2) : θR} is a unit hyperbola in the plane {x + yr2 : x, yR}. The spacetime transformations in the Lorentz group that lead to FitzGerald contractions and time dilation depend on a hyperbolic angle parameter. In the words of Ronald Shaw, "Bivectors are logarithms of Lorentz transformations."[2]

The commutator product of this Lie algebra is just twice the cross product on R3, for instance, [i,j] = ij − ji = 2k, which is twice i × j. As Shaw wrote in 1970:

Now it is well known that the Lie algebra of the homogeneous Lorentz group can be considered to be that of bivectors under commutation. [...] The Lie algebra of bivectors is essentially that of complex 3-vectors, with the Lie product being defined to be the familiar cross product in (complex) 3-dimensional space.[3]

William Rowan Hamilton coined both the terms vector and bivector. The first term was named with quaternions, and the second about a decade later, as in Lectures on Quaternions (1853).[1]: 665  The popular text Vector Analysis (1901) used the term.[4]: 249 

Given a bivector r = r1 + hr2, the ellipse for which r1 and r2 are a pair of conjugate semi-diameters is called the directional ellipse of the bivector r.[4]: 436 

In the standard linear representation of biquaternions as 2 × 2 complex matrices acting on the complex plane with basis {1, h},

represents bivector q = vi + wj + xk.

The conjugate transpose of this matrix corresponds to −q, so the representation of bivector q is a skew-Hermitian matrix.

Ludwik Silberstein studied a complexified electromagnetic field E + hB, where there are three components, each a complex number, known as the Riemann–Silberstein vector.[5][6]

"Bivectors [...] help describe elliptically polarized homogeneous and inhomogeneous plane waves – one vector for direction of propagation, one for amplitude."[7]

YouTube Encyclopedic

  • 1/3
    Views:
    9 625
    1 714
    2 234
  • Geometric Algebra in 2D - Fundamentals and Another Look at Complex Numbers
  • Geometric Algebra in 3D - Bivector Addition
  • From Vectors to Multivectors (Part 1 of 3)

Transcription

References

  1. ^ a b Hamilton, W.R. (1853). "On the geometrical interpretation of some results obtained by calculation with biquaternions" (PDF). Proceedings of the Royal Irish Academy. 5: 388–390. Link from David R. Wilkins collection at Trinity College, Dublin
  2. ^ Shaw, Ronald; Bowtell, Graham (1969). "The Bivector Logarithm of a Lorentz Transformation". Quarterly Journal of Mathematics. 20 (1): 497–503. doi:10.1093/qmath/20.1.497.
  3. ^ Shaw, Ronald (1970). "The subgroup structure of the homogeneous Lorentz group". Quarterly Journal of Mathematics. 21 (1): 101–124. doi:10.1093/qmath/21.1.101.
  4. ^ a b Edwin Bidwell Wilson (1901) Vector Analysis
  5. ^ Silberstein, Ludwik (1907). "Elektromagnetische Grundgleichungen in bivectorieller Behandlung" (PDF). Annalen der Physik. 327 (3): 579–586. Bibcode:1907AnP...327..579S. doi:10.1002/andp.19073270313.
  6. ^ Silberstein, Ludwik (1907). "Nachtrag zur Abhandlung über 'Elektromagnetische Grundgleichungen in bivectorieller Behandlung'" (PDF). Annalen der Physik. 329 (14): 783–4. Bibcode:1907AnP...329..783S. doi:10.1002/andp.19073291409.
  7. ^ "Telegraphic reviews §Bivectors and Waves in Mechanics and Optics". American Mathematical Monthly. 102 (6): 571. 1995. doi:10.1080/00029890.1995.12004621.
This page was last edited on 22 October 2022, at 01:16
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.