To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Alternating sign matrix

From Wikipedia, the free encyclopedia

The seven alternating sign matrices of size 3

In mathematics, an alternating sign matrix is a square matrix of 0s, 1s, and −1s such that the sum of each row and column is 1 and the nonzero entries in each row and column alternate in sign. These matrices generalize permutation matrices and arise naturally when using Dodgson condensation to compute a determinant.[1] They are also closely related to the six-vertex model with domain wall boundary conditions from statistical mechanics. They were first defined by William Mills, David Robbins, and Howard Rumsey in the former context.

YouTube Encyclopedic

  • 1/5
    Views:
    316
    27 443
    40 031
    12 223
    657
  • Developments in Alternating Sign Matrices part1
  • Finding the formula of alternating signs of a sequence
  • Kronecker delta and Levi-Civita symbol | Lecture 7 | Vector Calculus for Engineers
  • PreCalculus - Matrices & Matrix Applications (30 of 33) Find the Determinant of a 3x3 Matrix 1
  • Cramer's Rule Quick and Easy to Understand - Linear Algebra Explained Right

Transcription

Examples

A permutation matrix is an alternating sign matrix, and an alternating sign matrix is a permutation matrix if and only if no entry equals −1.

An example of an alternating sign matrix that is not a permutation matrix is

Puzzle picture

Alternating sign matrix theorem

The alternating sign matrix theorem states that the number of alternating sign matrices is

The first few terms in this sequence for n = 0, 1, 2, 3, … are

1, 1, 2, 7, 42, 429, 7436, 218348, … (sequence A005130 in the OEIS).

This theorem was first proved by Doron Zeilberger in 1992.[2] In 1995, Greg Kuperberg gave a short proof[3] based on the Yang–Baxter equation for the six-vertex model with domain-wall boundary conditions, that uses a determinant calculation due to Anatoli Izergin.[4] In 2005, a third proof was given by Ilse Fischer using what is called the operator method.[5]

Razumov–Stroganov problem

In 2001, A. Razumov and Y. Stroganov conjectured a connection between O(1) loop model, fully packed loop model (FPL) and ASMs.[6] This conjecture was proved in 2010 by Cantini and Sportiello.[7]

References

  1. ^ Hone, Andrew N. W. (2006), "Dodgson condensation, alternating signs and square ice", Philosophical Transactions of the Royal Society of London, 364 (1849): 3183–3198, doi:10.1098/rsta.2006.1887, MR 2317901
  2. ^ Zeilberger, Doron, "Proof of the alternating sign matrix conjecture", Electronic Journal of Combinatorics 3 (1996), R13.
  3. ^ Kuperberg, Greg, "Another proof of the alternating sign matrix conjecture", International Mathematics Research Notes (1996), 139-150.
  4. ^ "Determinant formula for the six-vertex model", A. G. Izergin et al. 1992 J. Phys. A: Math. Gen. 25 4315.
  5. ^ Fischer, Ilse (2005). "A new proof of the refined alternating sign matrix theorem". Journal of Combinatorial Theory, Series A. 114 (2): 253–264. arXiv:math/0507270. Bibcode:2005math......7270F. doi:10.1016/j.jcta.2006.04.004.
  6. ^ Razumov, A.V., Stroganov Yu.G., Spin chains and combinatorics, Journal of Physics A, 34 (2001), 3185-3190.
  7. ^ L. Cantini and A. Sportiello, Proof of the Razumov-Stroganov conjectureJournal of Combinatorial Theory, Series A, 118 (5), (2011) 1549–1574,

Further reading

External links

This page was last edited on 31 May 2024, at 07:55
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.