To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Alternant matrix

From Wikipedia, the free encyclopedia

In linear algebra, an alternant matrix is a matrix formed by applying a finite list of functions pointwise to a fixed column of inputs. An alternant determinant is the determinant of a square alternant matrix.

Generally, if are functions from a set to a field , and , then the alternant matrix has size and is defined by

or, more compactly, . (Some authors use the transpose of the above matrix.) Examples of alternant matrices include Vandermonde matrices, for which , and Moore matrices, for which .

Properties

  • The alternant can be used to check the linear independence of the functions in function space. For example, let , and choose . Then the alternant is the matrix and the alternant determinant is . Therefore M is invertible and the vectors form a basis for their spanning set: in particular, and are linearly independent.
  • Linear dependence of the columns of an alternant does not imply that the functions are linearly dependent in function space. For example, let , and choose . Then the alternant is and the alternant determinant is 0, but we have already seen that and are linearly independent.
  • Despite this, the alternant can be used to find a linear dependence if it is already known that one exists. For example, we know from the theory of partial fractions that there are real numbers A and B for which . Choosing , , and , we obtain the alternant . Therefore, is in the nullspace of the matrix: that is, . Moving to the other side of the equation gives the partial fraction decomposition .
  • If and for any , then the alternant determinant is zero (as a row is repeated).
  • If and the functions are all polynomials, then divides the alternant determinant for all . In particular, if V is a Vandermonde matrix, then divides such polynomial alternant determinants. The ratio is therefore a polynomial in called the bialternant. The Schur polynomial is classically defined as the bialternant of the polynomials .

Applications

See also

References

  • Thomas Muir (1960). A treatise on the theory of determinants. Dover Publications. pp. 321–363.
  • A. C. Aitken (1956). Determinants and Matrices. Oliver and Boyd Ltd. pp. 111–123.
  • Richard P. Stanley (1999). Enumerative Combinatorics. Cambridge University Press. pp. 334–342.
This page was last edited on 28 September 2023, at 21:58
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.