To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Radical-nucleophilic aromatic substitution

From Wikipedia, the free encyclopedia

Radical-nucleophilic aromatic substitution or SRN1 in organic chemistry is a type of substitution reaction in which a certain substituent on an aromatic compound is replaced by a nucleophile through an intermediary free radical species:

Radical-nucleophilic aromatic substitution overview
Radical-nucleophilic aromatic substitution overview

The substituent X is a halide and nucleophiles can be sodium amide, an alkoxide or a carbon nucleophile such as an enolate.[1] In contrast to regular nucleophilic aromatic substitution, deactivating groups on the arene are not required.[2]

This reaction type was discovered in 1970 by Bunnett and Kim[3] and the abbreviation SRN1 stands for substitution radical-nucleophilic unimolecular as it shares properties with an aliphatic SN1 reaction. An example of this reaction type is the Sandmeyer reaction.

YouTube Encyclopedic

  • 1/3
    Views:
    4 760
    32 153
    462 180
  • Nucleophilic Aromatic Substitution Reaction Mechanism - Meisenheimer Complex & Benzyne Intermediate
  • Nucleophilic aromatic substitution (1)
  • Free radical reactions | Substitution and elimination reactions | Organic chemistry | Khan Academy

Transcription

Reaction mechanism

Radical-nucleophilic aromatic substitution mechanism
Radical-nucleophilic aromatic substitution mechanism

In this radical substitution the aryl halide 1 accepts an electron from a radical initiator forming a radical anion 2. This intermediate collapses into an aryl radical 3 and a halide anion. The aryl radical reacts with the nucleophile 4 to a new radical anion 5 which goes on to form the substituted product by transferring its electron to new aryl halide in the chain propagation. Alternatively the phenyl radical can abstract any loose proton from 7 forming the arene 8 in a chain termination reaction.

The involvement of a radical intermediate in a new type of nucleophilic aromatic substitution was invoked when the product distribution was compared between a certain aromatic chloride and an aromatic iodide in reaction with potassium amide. The chloride reaction proceeds through a classical aryne intermediate:

AryneReaction Bunnett 1970
AryneReaction Bunnett 1970

The isomers 1a and 1b form the same aryne 2 which continues to react to the anilines 3a and 3b in a 1 to 1.5 ratio. Clear-cut cine-substitution would give a 1:1 ratio, but additional steric and electronic factors come into play as well.

Replacing chlorine by iodine in the 1,2,4-trimethylbenzene moiety drastically changes the product distribution:

Radical-nucleophilic aromatic substitution Bunnett 1970
Radical-nucleophilic aromatic substitution Bunnett 1970

It now resembles ipso-substitution with 1a forming preferentially 3a and 1b forming 3b. Radical scavengers suppress ipso-substitution in favor of cine-substitution and the addition of potassium metal as an electron donor and radical initiator does exactly the opposite.[4]

See also

References

  1. ^ Phenomenon of radical anion fragmentation in the course of aromatic SRN reactions Roberto A. Rossi Acc. Chem. Res.; 1982; 15(6) pp 164 – 170; doi:10.1021/ar00078a001.
  2. ^ Rossi, R. A.; Pierini, A. B.; Santiago, A. N. Org. React. 1999, 54, 1. doi:10.1002/0471264180.or054.01
  3. ^ Evidence for a radical mechanism of aromatic "nucleophilic" substitution Joseph F. Bunnett and Jhong Kook Kim J. Am. Chem. Soc.; 1970; 92(25) pp 7463 – 7464. (doi:10.1021/ja00728a037)
  4. ^ Alkali metal promoted aromatic "nucleophilic" substitution Joseph F. Bunnett and Jhong Kook Kim J. Am. Chem. Soc. 1970, 92, 7464 – 7466. (doi:10.1021/ja00728a038)
This page was last edited on 27 October 2022, at 19:31
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.