To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Collocation method

From Wikipedia, the free encyclopedia

In mathematics, a collocation method is a method for the numerical solution of ordinary differential equations, partial differential equations and integral equations. The idea is to choose a finite-dimensional space of candidate solutions (usually polynomials up to a certain degree) and a number of points in the domain (called collocation points), and to select that solution which satisfies the given equation at the collocation points.

YouTube Encyclopedic

  • 1/3
    Views:
    2 976
    7 401
    880
  • Weighted Residual Methods: Collocation Method
  • Mod-01 Lec-16 Orthogonal Collocations Method for Solving ODE - BVPs and PDEs
  • Weighted Residual (2/5): Collocation

Transcription

Ordinary differential equations

Suppose that the ordinary differential equation

is to be solved over the interval . Choose from 0 ≤ c1< c2< ... < cn ≤ 1.

The corresponding (polynomial) collocation method approximates the solution y by the polynomial p of degree n which satisfies the initial condition , and the differential equation at all collocation points for . This gives n + 1 conditions, which matches the n + 1 parameters needed to specify a polynomial of degree n.

All these collocation methods are in fact implicit Runge–Kutta methods. The coefficients ck in the Butcher tableau of a Runge–Kutta method are the collocation points. However, not all implicit Runge–Kutta methods are collocation methods. [1]

Example: The trapezoidal rule

Pick, as an example, the two collocation points c1 = 0 and c2 = 1 (so n = 2). The collocation conditions are

There are three conditions, so p should be a polynomial of degree 2. Write p in the form

to simplify the computations. Then the collocation conditions can be solved to give the coefficients

The collocation method is now given (implicitly) by

where y1 = p(t0 + h) is the approximate solution at t = t1 = t0 + h.

This method is known as the "trapezoidal rule" for differential equations. Indeed, this method can also be derived by rewriting the differential equation as

and approximating the integral on the right-hand side by the trapezoidal rule for integrals.

Other examples

The Gauss–Legendre methods use the points of Gauss–Legendre quadrature as collocation points. The Gauss–Legendre method based on s points has order 2s.[2] All Gauss–Legendre methods are A-stable.[3]

In fact, one can show that the order of a collocation method corresponds to the order of the quadrature rule that one would get using the collocation points as weights.

Orthogonal collocation method

In direct collocation method, we are essentially performing variational calculus with the finite-dimensional subspace of piecewise linear functions (as in trapezoidal rule), or cubic functions, or other piecewise polynomial functions. In orthogonal collocation method, we instead use the finite-dimensional subspace spanned by the first N vectors in some orthogonal polynomial basis, such as the Legendre polynomials.

Notes

References

  • Ascher, Uri M.; Petzold, Linda R. (1998), Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations, Philadelphia: Society for Industrial and Applied Mathematics, ISBN 978-0-89871-412-8.
  • Hairer, Ernst; Nørsett, Syvert Paul; Wanner, Gerhard (1993), Solving ordinary differential equations I: Nonstiff problems, Berlin, New York: Springer-Verlag, ISBN 978-3-540-56670-0.
  • Iserles, Arieh (1996), A First Course in the Numerical Analysis of Differential Equations, Cambridge University Press, ISBN 978-0-521-55655-2.
  • Wang, Yingwei; Chen, Suqin; Wu, Xionghua (2009), "A rational spectral collocation method for solving a class of parameterized singular perturbation problems", Journal of Computational and Applied Mathematics, 233 (10): 2652–2660, doi:10.1016/j.cam.2009.11.011.


This page was last edited on 25 January 2024, at 07:15
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.