To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Trapezoidal rule (differential equations)

From Wikipedia, the free encyclopedia

In numerical analysis and scientific computing, the trapezoidal rule is a numerical method to solve ordinary differential equations derived from the trapezoidal rule for computing integrals. The trapezoidal rule is an implicit second-order method, which can be considered as both a Runge–Kutta method and a linear multistep method.

YouTube Encyclopedic

  • 1/3
    Views:
    406
    39 125
    417 889
  • Trapezoidal Stability Solution - Differential Equations in Action
  • Trapezoidal Rule: Derivation
  • Euler's method | First order differential equations | Khan Academy

Transcription

Method

Suppose that we want to solve the differential equation

The trapezoidal rule is given by the formula
where is the step size.[1]

This is an implicit method: the value appears on both sides of the equation, and to actually calculate it, we have to solve an equation which will usually be nonlinear. One possible method for solving this equation is Newton's method. We can use the Euler method to get a fairly good estimate for the solution, which can be used as the initial guess of Newton's method.[2] Cutting short, using only the guess from Eulers method is equivalent to performing Heun's method.

Motivation

Integrating the differential equation from to , we find that

The trapezoidal rule states that the integral on the right-hand side can be approximated as
Now combine both formulas and use that and to get the trapezoidal rule for solving ordinary differential equations.[3]

Error analysis

It follows from the error analysis of the trapezoidal rule for quadrature that the local truncation error of the trapezoidal rule for solving differential equations can be bounded as:

Thus, the trapezoidal rule is a second-order method.[citation needed] This result can be used to show that the global error is as the step size tends to zero (see big O notation for the meaning of this).[4]

Stability

The pink region is the stability region for the trapezoidal method.

The region of absolute stability for the trapezoidal rule is

This includes the left-half plane, so the trapezoidal rule is A-stable. The second Dahlquist barrier states that the trapezoidal rule is the most accurate amongst the A-stable linear multistep methods. More precisely, a linear multistep method that is A-stable has at most order two, and the error constant of a second-order A-stable linear multistep method cannot be better than the error constant of the trapezoidal rule.[5]

In fact, the region of absolute stability for the trapezoidal rule is precisely the left-half plane. This means that if the trapezoidal rule is applied to the linear test equation y' = λy, the numerical solution decays to zero if and only if the exact solution does.

Notes

References

  • Iserles, Arieh (1996), A First Course in the Numerical Analysis of Differential Equations, Cambridge University Press, ISBN 978-0-521-55655-2.
  • Süli, Endre; Mayers, David (2003), An Introduction to Numerical Analysis, Cambridge University Press, ISBN 0521007941.

See also


This page was last edited on 10 April 2023, at 20:13
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.