To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

From Wikipedia, the free encyclopedia

In abstract algebra, an element a of a ring R is called a left zero divisor if there exists a nonzero x in R such that ax = 0,[1] or equivalently if the map from R to R that sends x to ax is not injective.[a] Similarly, an element a of a ring is called a right zero divisor if there exists a nonzero y in R such that ya = 0. This is a partial case of divisibility in rings. An element that is a left or a right zero divisor is simply called a zero divisor.[2] An element a that is both a left and a right zero divisor is called a two-sided zero divisor (the nonzero x such that ax = 0 may be different from the nonzero y such that ya = 0). If the ring is commutative, then the left and right zero divisors are the same.

An element of a ring that is not a left zero divisor (respectively, not a right zero divisor) is called left regular or left cancellable (respectively, right regular or right cancellable). An element of a ring that is left and right cancellable, and is hence not a zero divisor, is called regular or cancellable,[3] or a non-zero-divisor. A zero divisor that is nonzero is called a nonzero zero divisor or a nontrivial zero divisor. A non-zero ring with no nontrivial zero divisors is called a domain.

YouTube Encyclopedic

  • 1/5
    Views:
    8 088
    4 965
    31 813
    6 354
    3 810
  • Definition of a Zero Divisor with Examples of Zero Divisors
  • Abstract Algebra | Units and zero divisors of a ring.
  • Ring Theory 5: Zero Divisors and Integral Domains
  • What are zero divisors ? Give some examples
  • Zero Divisor Definition and how to find it with Example |Maths |Mad Teacher

Transcription

Examples

  • In the ring , the residue class is a zero divisor since .
  • The only zero divisor of the ring of integers is .
  • A nilpotent element of a nonzero ring is always a two-sided zero divisor.
  • An idempotent element of a ring is always a two-sided zero divisor, since .
  • The ring of n × n matrices over a field has nonzero zero divisors if n ≥ 2. Examples of zero divisors in the ring of 2 × 2 matrices (over any nonzero ring) are shown here:

  • A direct product of two or more nonzero rings always has nonzero zero divisors. For example, in with each nonzero, , so is a zero divisor.
  • Let be a field and be a group. Suppose that has an element of finite order . Then in the group ring one has , with neither factor being zero, so is a nonzero zero divisor in .

One-sided zero-divisor

  • Consider the ring of (formal) matrices with and . Then and . If , then is a left zero divisor if and only if is even, since , and it is a right zero divisor if and only if is even for similar reasons. If either of is , then it is a two-sided zero-divisor.
  • Here is another example of a ring with an element that is a zero divisor on one side only. Let be the set of all sequences of integers . Take for the ring all additive maps from to , with pointwise addition and composition as the ring operations. (That is, our ring is , the endomorphism ring of the additive group .) Three examples of elements of this ring are the right shift , the left shift , and the projection map onto the first factor . All three of these additive maps are not zero, and the composites and are both zero, so is a left zero divisor and is a right zero divisor in the ring of additive maps from to . However, is not a right zero divisor and is not a left zero divisor: the composite is the identity. is a two-sided zero-divisor since , while is not in any direction.

Non-examples

Properties

  • In the ring of n × n matrices over a field, the left and right zero divisors coincide; they are precisely the singular matrices. In the ring of n × n matrices over an integral domain, the zero divisors are precisely the matrices with determinant zero.
  • Left or right zero divisors can never be units, because if a is invertible and ax = 0 for some nonzero x, then 0 = a−10 = a−1ax = x, a contradiction.
  • An element is cancellable on the side on which it is regular. That is, if a is a left regular, ax = ay implies that x = y, and similarly for right regular.

Zero as a zero divisor

There is no need for a separate convention for the case a = 0, because the definition applies also in this case:

  • If R is a ring other than the zero ring, then 0 is a (two-sided) zero divisor, because any nonzero element x satisfies 0x = 0 = x 0.
  • If R is the zero ring, in which 0 = 1, then 0 is not a zero divisor, because there is no nonzero element that when multiplied by 0 yields 0.

Some references include or exclude 0 as a zero divisor in all rings by convention, but they then suffer from having to introduce exceptions in statements such as the following:

Zero divisor on a module

Let R be a commutative ring, let M be an R-module, and let a be an element of R. One says that a is M-regular if the "multiplication by a" map is injective, and that a is a zero divisor on M otherwise.[4] The set of M-regular elements is a multiplicative set in R.[4]

Specializing the definitions of "M-regular" and "zero divisor on M" to the case M = R recovers the definitions of "regular" and "zero divisor" given earlier in this article.

See also

Notes

  1. ^ Since the map is not injective, we have ax = ay, in which x differs from y, and thus a(xy) = 0.

References

  1. ^ N. Bourbaki (1989), Algebra I, Chapters 1–3, Springer-Verlag, p. 98
  2. ^ Charles Lanski (2005), Concepts in Abstract Algebra, American Mathematical Soc., p. 342
  3. ^ Nicolas Bourbaki (1998). Algebra I. Springer Science+Business Media. p. 15.
  4. ^ a b Hideyuki Matsumura (1980), Commutative algebra, 2nd edition, The Benjamin/Cummings Publishing Company, Inc., p. 12

Further reading

This page was last edited on 19 February 2024, at 02:33
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.