To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.

Element (mathematics)

From Wikipedia, the free encyclopedia

In mathematics, an element (or member) of a set is any one of the distinct objects that belong to that set.

YouTube Encyclopedic

  • 1/5
    1 747 387
    68 872
    50 419
    3 710 378
    82 177
  • All Maths Sign/Symbols
  • Some Set Theory Symbols 📚 #Shorts #math #maths #mathematics #education #learn #learning
  • [PDF] Relations and Functions | Class 12 | Introduction | Elements of Mathematics and NCERT
  • 🤔 2+2=5 proved | cool tricks of mathematics | #uLyk learn #maths #students #learning #shorts
  • This Book Created a MATH GENIUS



Writing means that the elements of the set A are the numbers 1, 2, 3 and 4. Sets of elements of A, for example , are subsets of A.

Sets can themselves be elements. For example, consider the set . The elements of B are not 1, 2, 3, and 4. Rather, there are only three elements of B, namely the numbers 1 and 2, and the set .

The elements of a set can be anything. For example, is the set whose elements are the colors red, green and blue.

In logical terms, (xy) ↔ (∀x[Px = y] : x ∈ 𝔇y).

Notation and terminology

The relation "is an element of", also called set membership, is denoted by the symbol "∈". Writing

means that "x is an element of A".[1] Equivalent expressions are "x is a member of A", "x belongs to A", "x is in A" and "x lies in A". The expressions "A includes x" and "A contains x" are also used to mean set membership, although some authors use them to mean instead "x is a subset of A".[2] Logician George Boolos strongly urged that "contains" be used for membership only, and "includes" for the subset relation only.[3]

For the relation ∈ , the converse relationT may be written

meaning "A contains or includes x".

The negation of set membership is denoted by the symbol "∉". Writing

means that "x is not an element of A".

The symbol ∈ was first used by Giuseppe Peano, in his 1889 work Arithmetices principia, nova methodo exposita.[4] Here he wrote on page X:

Signum ∈ significat est. Ita a ∈ b legitur a est quoddam b; …

which means

The symbol ∈ means is. So a ∈ b is read as a is a certain b; …

The symbol itself is a stylized lowercase Greek letter epsilon ("ϵ"), the first letter of the word ἐστί, which means "is".[4]

Character information
Encodings decimal hex dec hex dec hex dec hex
Unicode 8712 U+2208 8713 U+2209 8715 U+220B 8716 U+220C
UTF-8 226 136 136 E2 88 88 226 136 137 E2 88 89 226 136 139 E2 88 8B 226 136 140 E2 88 8C
Numeric character reference
Named character reference ∈, ∈, ∈, ∈ ∉, ∉, ∉ ∋, ∋, ∋, ∋ ∌, ∌, ∌
LaTeX \in \notin \ni \not\ni or \notni
Wolfram Mathematica \[Element] \[NotElement] \[ReverseElement] \[NotReverseElement]

Cardinality of sets

The number of elements in a particular set is a property known as cardinality; informally, this is the size of a set.[5] In the above examples, the cardinality of the set A is 4, while the cardinality of set B and set C are both 3. An infinite set is a set with an infinite number of elements, while a finite set is a set with a finite number of elements. The above examples are examples of finite sets. An example of an infinite set is the set of positive integers {1, 2, 3, 4, ...}.


Using the sets defined above, namely A = {1, 2, 3, 4}, B = {1, 2, {3, 4}} and C = {red, green, blue}, the following statements are true:

  • 2 ∈ A
  • 5 ∉ A
  • {3, 4} ∈ B
  • 3 ∉ B
  • 4 ∉ B
  • yellow ∉ C

Formal relation

As a relation, set membership must have a domain and a range. Conventionally the domain is called the universe denoted U. The range is the set of subsets of U called the power set of U and denoted P(U). Thus the relation is a subset of U x P(U). The converse relation is a subset of P(U) x U.

See also


  1. ^ Weisstein, Eric W. "Element". Retrieved 2020-08-10.
  2. ^ Eric Schechter (1997). Handbook of Analysis and Its Foundations. Academic Press. ISBN 0-12-622760-8. p. 12
  3. ^ George Boolos (February 4, 1992). 24.243 Classical Set Theory (lecture) (Speech). Massachusetts Institute of Technology.
  4. ^ a b Kennedy, H. C. (July 1973). "What Russell learned from Peano". Notre Dame Journal of Formal Logic. Duke University Press. 14 (3): 367–372. doi:10.1305/ndjfl/1093891001. MR 0319684.
  5. ^ "Sets - Elements | Brilliant Math & Science Wiki". Retrieved 2020-08-10.

Further reading

This page was last edited on 21 August 2023, at 21:54
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.