To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Total ring of fractions

From Wikipedia, the free encyclopedia

In abstract algebra, the total quotient ring[1] or total ring of fractions[2] is a construction that generalizes the notion of the field of fractions of an integral domain to commutative rings R that may have zero divisors. The construction embeds R in a larger ring, giving every non-zero-divisor of R an inverse in the larger ring. If the homomorphism from R to the new ring is to be injective, no further elements can be given an inverse.

YouTube Encyclopedic

  • 1/5
    Views:
    1 200
    2 595
    817
    526
    2 295 855
  • Ring Lecture 7.1: Rings of Fractions
  • Ring of Fractions | Field of Fractions or Quotient Field | Urdu | Hindi
  • Commutative Algebra- 6-Ring of Fractions
  • Ring Lecture 7.2: Rings and Modules of Fractions
  • Math Antics - Comparing Fractions

Transcription

Definition

Let be a commutative ring and let be the set of elements that are not zero divisors in ; then is a multiplicatively closed set. Hence we may localize the ring at the set to obtain the total quotient ring .

If is a domain, then and the total quotient ring is the same as the field of fractions. This justifies the notation , which is sometimes used for the field of fractions as well, since there is no ambiguity in the case of a domain.

Since in the construction contains no zero divisors, the natural map is injective, so the total quotient ring is an extension of .

Examples

  • For a product ring A × B, the total quotient ring Q(A × B) is the product of total quotient rings Q(A) × Q(B). In particular, if A and B are integral domains, it is the product of quotient fields.
  • In an Artinian ring, all elements are units or zero divisors. Hence the set of non-zero-divisors is the group of units of the ring, , and so . But since all these elements already have inverses, .
  • In a commutative von Neumann regular ring R, the same thing happens. Suppose a in R is not a zero divisor. Then in a von Neumann regular ring a = axa for some x in R, giving the equation a(xa − 1) = 0. Since a is not a zero divisor, xa = 1, showing a is a unit. Here again, .

The total ring of fractions of a reduced ring

Proposition — Let A be a reduced ring that has only finitely many minimal prime ideals, (e.g., a Noetherian reduced ring). Then

Geometrically, is the Artinian scheme consisting (as a finite set) of the generic points of the irreducible components of .

Proof: Every element of Q(A) is either a unit or a zero divisor. Thus, any proper ideal I of Q(A) is contained in the set of zero divisors of Q(A); that set equals the union of the minimal prime ideals since Q(A) is reduced. By prime avoidance, I must be contained in some . Hence, the ideals are maximal ideals of Q(A). Also, their intersection is zero. Thus, by the Chinese remainder theorem applied to Q(A),

.

Let S be the multiplicatively closed set of non-zero-divisors of A. By exactness of localization,

,

which is already a field and so must be .

Generalization

If is a commutative ring and is any multiplicatively closed set in , the localization can still be constructed, but the ring homomorphism from to might fail to be injective. For example, if , then is the trivial ring.

Citations

References

  • Matsumura, Hideyuki (1980), Commutative algebra (2nd ed.), Benjamin/Cummings, ISBN 978-0-8053-7026-3, OCLC 988482880
  • Matsumura, Hideyuki (1989), Commutative ring theory, Cambridge University Press, ISBN 978-0-521-36764-6, OCLC 23133540
This page was last edited on 29 January 2024, at 16:20
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.