To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Hurewicz theorem

From Wikipedia, the free encyclopedia

In mathematics, the Hurewicz theorem is a basic result of algebraic topology, connecting homotopy theory with homology theory via a map known as the Hurewicz homomorphism. The theorem is named after Witold Hurewicz, and generalizes earlier results of Henri Poincaré.

Statement of the theorems

The Hurewicz theorems are a key link between homotopy groups and homology groups.

Absolute version

For any path-connected space X and positive integer n there exists a group homomorphism

called the Hurewicz homomorphism, from the n-th homotopy group to the n-th homology group (with integer coefficients). It is given in the following way: choose a canonical generator , then a homotopy class of maps is taken to .

The Hurewicz theorem states cases in which the Hurewicz homomorphism is an isomorphism.

  • For , if X is -connected (that is: for all ), then for all , and the Hurewicz map is an isomorphism.[1]: 366, Thm.4.32  This implies, in particular, that the homological connectivity equals the homotopical connectivity when the latter is at least 1. In addition, the Hurewicz map is an epimorphism in this case.[1]: 390, ? 
  • For , the Hurewicz homomorphism induces an isomorphism , between the abelianization of the first homotopy group (the fundamental group) and the first homology group.

Relative version

For any pair of spaces and integer there exists a homomorphism

from relative homotopy groups to relative homology groups. The Relative Hurewicz Theorem states that if both and are connected and the pair is -connected then for and is obtained from by factoring out the action of . This is proved in, for example, Whitehead (1978) by induction, proving in turn the absolute version and the Homotopy Addition Lemma.

This relative Hurewicz theorem is reformulated by Brown & Higgins (1981) as a statement about the morphism

where denotes the cone of . This statement is a special case of a homotopical excision theorem, involving induced modules for (crossed modules if ), which itself is deduced from a higher homotopy van Kampen theorem for relative homotopy groups, whose proof requires development of techniques of a cubical higher homotopy groupoid of a filtered space.

Triadic version

For any triad of spaces (i.e., a space X and subspaces A, B) and integer there exists a homomorphism

from triad homotopy groups to triad homology groups. Note that

The Triadic Hurewicz Theorem states that if X, A, B, and are connected, the pairs and are -connected and -connected, respectively, and the triad is -connected, then for and is obtained from by factoring out the action of and the generalised Whitehead products. The proof of this theorem uses a higher homotopy van Kampen type theorem for triadic homotopy groups, which requires a notion of the fundamental -group of an n-cube of spaces.

Simplicial set version

The Hurewicz theorem for topological spaces can also be stated for n-connected simplicial sets satisfying the Kan condition.[2]

Rational Hurewicz theorem

Rational Hurewicz theorem:[3][4] Let X be a simply connected topological space with for . Then the Hurewicz map

induces an isomorphism for and a surjection for .

Notes

  1. ^ a b Hatcher, Allen (2001), Algebraic Topology, Cambridge University Press, ISBN 978-0-521-79160-1
  2. ^ Goerss, Paul G.; Jardine, John Frederick (1999), Simplicial Homotopy Theory, Progress in Mathematics, vol. 174, Basel, Boston, Berlin: Birkhäuser, ISBN 978-3-7643-6064-1, III.3.6, 3.7
  3. ^ Klaus, Stephan; Kreck, Matthias (2004), "A quick proof of the rational Hurewicz theorem and a computation of the rational homotopy groups of spheres", Mathematical Proceedings of the Cambridge Philosophical Society, 136 (3): 617–623, Bibcode:2004MPCPS.136..617K, doi:10.1017/s0305004103007114, S2CID 119824771
  4. ^ Cartan, Henri; Serre, Jean-Pierre (1952), "Espaces fibrés et groupes d'homotopie, II, Applications", Comptes rendus de l'Académie des Sciences, 2 (34): 393–395

References

This page was last edited on 19 August 2023, at 00:36
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.