To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.

n-connected space

From Wikipedia, the free encyclopedia

In the mathematical branch of algebraic topology, specifically homotopy theory, n-connectedness (sometimes, n-simple connectedness) generalizes the concepts of path-connectedness and simple connectedness. To say that a space is n-connected is to say that its first n homotopy groups are trivial, and to say that a map is n-connected means that it is an isomorphism "up to dimension n, in homotopy".

n-connected space

A topological space X is said to be n-connected (for positive n) when it is non-empty, path-connected, and its first n homotopy groups vanish identically, that is

where denotes the i-th homotopy group and 0 denotes the trivial group.[1]

The requirements of being non-empty and path-connected can be interpreted as (−1)-connected and 0-connected, respectively, which is useful in defining 0-connected and 1-connected maps, as below. The 0th homotopy set can be defined as:

This is only a pointed set, not a group, unless X is itself a topological group; the distinguished point is the class of the trivial map, sending S0 to the base point of X. Using this set, a space is 0-connected if and only if the 0th homotopy set is the one-point set. The definition of homotopy groups and this homotopy set require that X be pointed (have a chosen base point), which cannot be done if X is empty.

A topological space X is path-connected if and only if its 0th homotopy group vanishes identically, as path-connectedness implies that any two points x1 and x2 in X can be connected with a continuous path which starts in x1 and ends in x2, which is equivalent to the assertion that every mapping from S0 (a discrete set of two points) to X can be deformed continuously to a constant map. With this definition, we can define X to be n-connected if and only if


  • A space X is (−1)-connected if and only if it is non-empty.
  • A space X is 0-connected if and only if it is non-empty and path-connected.
  • A space is 1-connected if and only if it is simply connected.
  • An n-sphere is (n − 1)-connected.

n-connected map

The corresponding relative notion to the absolute notion of an n-connected space is an n-connected map, which is defined as a map whose homotopy fiber Ff is an (n − 1)-connected space. In terms of homotopy groups, it means that a map is n-connected if and only if:

  • is an isomorphism for , and
  • is a surjection.

The last condition is frequently confusing; it is because the vanishing of the (n − 1)-st homotopy group of the homotopy fiber Ff corresponds to a surjection on the nth homotopy groups, in the exact sequence:

If the group on the right vanishes, then the map on the left is a surjection.

Low-dimensional examples:

  • A connected map (0-connected map) is one that is onto path components (0th homotopy group); this corresponds to the homotopy fiber being non-empty.
  • A simply connected map (1-connected map) is one that is an isomorphism on path components (0th homotopy group) and onto the fundamental group (1st homotopy group).

n-connectivity for spaces can in turn be defined in terms of n-connectivity of maps: a space X with basepoint x0 is an n-connected space if and only if the inclusion of the basepoint is an n-connected map. The single point set is contractible, so all its homotopy groups vanish, and thus "isomorphism below n and onto at n" corresponds to the first n homotopy groups of X vanishing.


This is instructive for a subset: an n-connected inclusion is one such that, up to dimension n − 1, homotopies in the larger space X can be homotoped into homotopies in the subset A.

For example, for an inclusion map to be 1-connected, it must be:

  • onto
  • one-to-one on and
  • onto

One-to-one on means that if there is a path connecting two points by passing through X, there is a path in A connecting them, while onto means that in fact a path in X is homotopic to a path in A.

In other words, a function which is an isomorphism on only implies that any elements of that are homotopic in X are abstractly homotopic in A – the homotopy in A may be unrelated to the homotopy in X – while being n-connected (so also onto ) means that (up to dimension n − 1) homotopies in X can be pushed into homotopies in A.

This gives a more concrete explanation for the utility of the definition of n-connectedness: for example, a space where the inclusion of the k-skeleton is n-connected (for n > k) – such as the inclusion of a point in the n-sphere – has the property that any cells in dimensions between k and n do not affect the lower-dimensional homotopy types.


The concept of n-connectedness is used in the Hurewicz theorem which describes the relation between singular homology and the higher homotopy groups.

In geometric topology, cases when the inclusion of a geometrically-defined space, such as the space of immersions into a more general topological space, such as the space of all continuous maps between two associated spaces are n-connected are said to satisfy a homotopy principle or "h-principle". There are a number of powerful general techniques for proving h-principles.

See also


  1. ^ "n-connected space in nLab". Retrieved 2017-09-18.
This page was last edited on 26 July 2021, at 16:28
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.