To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

From Wikipedia, the free encyclopedia

Allen E. Hatcher
Allen Hatcher.jpg
Allen Hatcher at Berkeley in 1980
Born (1944-10-23) October 23, 1944 (age 76)
NationalityAmerican
Alma materOberlin College
Stanford University
Scientific career
FieldsMathematics
InstitutionsPrinceton University
University of California, Los Angeles
Cornell University
ThesisA K2 Obstruction for Pseudo-Isotopies (1971)
Doctoral advisorHans Samelson
Doctoral students

Allen Edward Hatcher (born October 23, 1944) is an American topologist.

Biography

Hatcher was born in Indianapolis, Indiana.[1] After obtaining his B.S from Oberlin College in 1966, he went for his graduate studies to Stanford University, where he received his Ph.D. in 1971.[1] His thesis, A K2 Obstruction for Pseudo-Isotopies, was written under the supervision of Hans Samelson.[2] Afterwards, Hatcher went to Princeton University, where he was an NSF postdoc for a year, then a lecturer for another year, and then Assistant Professor from 1973 to 1979. He was also a member of the Institute for Advanced Study in 1975–76 and 1979–80.[1] Hatcher went on to become a professor at the University of California, Los Angeles in 1977. From 1983 he has been a professor at Cornell University; he is now a professor emeritus.[3]

In 1978 Hatcher was an invited speaker at the International Congresses of Mathematicians in Helsinki.

Mathematical contributions

He has worked in geometric topology, both in high dimensions, relating pseudoisotopy to algebraic K-theory, and in low dimensions: surfaces and 3-manifolds, such as proving the Smale conjecture for the 3-sphere.

3-manifolds

Perhaps among his most recognized results in 3-manifolds concern the classification of incompressible surfaces in certain 3-manifolds and their boundary slopes. William Floyd and Hatcher classified all the incompressible surfaces in punctured-torus bundles over the circle. William Thurston and Hatcher classified the incompressible surfaces in 2-bridge knot complements. As corollaries, this gave more examples of non-Haken, non-Seifert fibered, irreducible 3-manifolds and extended the techniques and line of investigation started in Thurston's Princeton lecture notes. Hatcher also showed that irreducible, boundary-irreducible 3-manifolds with toral boundary have at most "half" of all possible boundary slopes resulting from essential surfaces. In the case of one torus boundary, one can conclude that the number of slopes given by essential surfaces is finite.

Hatcher has made contributions to the so-called theory of essential laminations in 3-manifolds. He invented the notion of "end-incompressibility" and several of his students, such as Mark Brittenham, Charles Delman, and Rachel Roberts, have made important contributions to the theory.

Surfaces

Hatcher and Thurston exhibited an algorithm to produce a presentation of the mapping class group of a closed, orientable surface. Their work relied on the notion of a cut system and moves that relate any two systems.

Selected publications

Papers

Books

  • Hatcher, Allen (2002). Algebraic topology. Cambridge: Cambridge University Press. ISBN 0-521-79160-X.

Books in progress

External links

References

This page was last edited on 5 May 2021, at 17:36
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.