To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Threohydrobupropion

From Wikipedia, the free encyclopedia

Threohydrobupropion
Clinical data
Other namesthreo-Hydrobupropion; Threohydroxybupropion; BW 494; BW A494U; threo-3-Chloro-N-tert-butyl-β-hydroxy-α-methylphenethylamine; threo-3-Chloro-N-tert-butyl-β-hydroxyamphetamine
Pharmacokinetic data
Protein binding42%[1]
MetabolismHydroxylation (CYP2B6, CYP2C19), glucuronidation (UGTs)[1]
Elimination half-life37 hours[1][2]
Identifiers
  • 2-(tert-butylamino)-1-(3-chlorophenyl)propan-1-ol
CAS Number
PubChem CID
ChemSpider
ChEMBL
CompTox Dashboard (EPA)
ECHA InfoCard100.216.731 Edit this at Wikidata
Chemical and physical data
FormulaC13H20ClNO
Molar mass241.76 g·mol−1
3D model (JSmol)
  • CC(C(C1=CC(=CC=C1)Cl)O)NC(C)(C)C
  • InChI=1S/C13H20ClNO/c1-9(15-13(2,3)4)12(16)10-6-5-7-11(14)8-10/h5-9,12,15-16H,1-4H3
  • Key:NDPTTXIBLSWNSF-UHFFFAOYSA-N

Threohydrobupropion (developmental code names BW 494, BW A494U) is a substituted amphetamine derivative—specifically a β-hydroxyamphetamine—and a major active metabolite of the antidepressant drug bupropion (Wellbutrin).[1][2] Bupropion is a norepinephrine–dopamine reuptake inhibitor and nicotinic acetylcholine receptor negative allosteric modulator, with its metabolites contributing substantially to its activities.[1] Threohydrobupropion exists as two isomers, (1R,2R)-threohydrobupropion and (1S,2S)-threohydrobupropion.[3][1] Other metabolites of bupropion include hydroxybupropion and erythrohydrobupropion.[1][2]

Information on the pharmacological actions of threohydrobupropion is scarce.[1] In any case, it is about 20% as pharmacologically potent as bupropion and in the range of 20 to 50% as potent as bupropion in mouse models of depression.[1][2] Moreover, threohydrobupropion has been reported to weakly inhibit the reuptake of norepinephrine, dopamine, and serotonin with rat IC50Tooltip half-maximal inhibitory concentration or Ki values of 16 μM, 47 μM, and 67 μM, respectively.[4] These values can be compared to rat values with bupropion of 1,400 nM, 570 nM, and 19,000 nM, respectively.[4] Besides monoamine reuptake inhibition, threohydrobupropion has also been reported to inhibit α3β4 nicotinic acetylcholine receptors, with an IC50 value of 14 μM.[5] Threohydrobupropion circulates at higher concentrations than bupropion during bupropion therapy, similarly to hydroxybupropion but in contrast to erythrohydrobupropion—which circulates at similar concentrations as bupropion.[1][2]

The plasma protein binding of threohydrobupropion is 42%.[1] Threohydrobupropion is formed from bupropion via reduction of the ketone group by 11β-hydroxysteroid dehydrogenase-1 and aldo-keto reductases.[1] It can also be formed from bupropion by carbonyl reductases.[1][2] The compound is metabolized by the cytochrome P450 enzymes CYP2B6 and CYP2C19 into threo-4'-hydroxy-hydrobupropion and by various glucuronosyltransferase enzymes into glucuronide conjugates.[1] Its elimination half-life is approximately 37 hours.[1][2]

Dry mouth during bupropion therapy has been associated with threohydrobupropion concentrations.[1] Administration of threohydrobupropion in mice produces seizures at sufficiently high doses similarly to bupropion and other metabolites.[1] Threohydrobupropion is a CYP2D6 inhibitor and accounts for about 21% of CYP2D6 inhibition during bupropion therapy, with hydroxybupropion accounting for 65% and erythrohydrobupropion accounting for 9%.[1]

References

  1. ^ a b c d e f g h i j k l m n o p q r Costa R, Oliveira NG, Dinis-Oliveira RJ (August 2019). "Pharmacokinetic and pharmacodynamic of bupropion: integrative overview of relevant clinical and forensic aspects". Drug Metab Rev. 51 (3): 293–313. doi:10.1080/03602532.2019.1620763. PMID 31124380. S2CID 163167323.
  2. ^ a b c d e f g Jefferson JW, Pradko JF, Muir KT (November 2005). "Bupropion for major depressive disorder: Pharmacokinetic and formulation considerations". Clin Ther. 27 (11): 1685–95. doi:10.1016/j.clinthera.2005.11.011. PMID 16368442.
  3. ^ Masters AR, Gufford BT, Lu JB, Metzger IF, Jones DR, Desta Z (August 2016). "Chiral Plasma Pharmacokinetics and Urinary Excretion of Bupropion and Metabolites in Healthy Volunteers". J Pharmacol Exp Ther. 358 (2): 230–8. doi:10.1124/jpet.116.232876. PMC 4959100. PMID 27255113.
  4. ^ a b Sánchez C, Hyttel J (August 1999). "Comparison of the effects of antidepressants and their metabolites on reuptake of biogenic amines and on receptor binding". Cell Mol Neurobiol. 19 (4): 467–89. doi:10.1023/a:1006986824213. PMID 10379421. S2CID 19490821.
  5. ^ Bondarev ML, Bondareva TS, Young R, Glennon RA (August 2003). "Behavioral and biochemical investigations of bupropion metabolites". Eur J Pharmacol. 474 (1): 85–93. doi:10.1016/s0014-2999(03)02010-7. PMID 12909199.
This page was last edited on 4 February 2024, at 01:47
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.