To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Purple acid phosphatases

From Wikipedia, the free encyclopedia

Purple acid phosphatases (PAPs) (EC 3.1.3.2) are metalloenzymes that hydrolyse phosphate esters and anhydrides under acidic condition.[1][2] In their oxidised form, PAPs in solution are purple in colour. This is due to the presence of a dinuclear iron centre,[3] to which a tyrosine residue is connected via a charge transfer.[4] This metallic centre is composed of Fe3+ and M, where M is Fe3+, Zn2+, Mg2+ or Mn2+. The conserved Fe3+ is stabilised in the ferric form, whereas M may undergo reduction. Upon treatment with mild reductants, PAPs are converted to their enzymatically active, pink form. Treatment with strong reducing agents dissociates the metallic ions, and renders the enzyme colourless and inactive.[5]

PAPs are highly conserved within eukaryotic species, with >80% amino acid homology in mammalian PAPs,[6] and >70% sequence homology in PAPs of plant origin.[7] However sequence analysis reveals that there is minimal homology between plant and mammal PAPs (<20%), except for the metal-ligating amino acid residues which are identical.[8] The metallic nucleus of PAPs also varies between plants and mammals. Mammalian PAPs which have been isolated and purified have, to this point, been composed exclusively of iron ions, whereas in plants the metallic nucleus is composed of Fe3+ and either Zn2+ or Mn2+. PAPs have also been isolated in fungi, and DNA sequences encoding for possible PAPs have been identified in prokaryotic organisms, such as in Cyanobacteria spp. and Mycobacteria spp.[9]

Currently there is no defined nomenclature for this group of enzymes, and a variety of names exists. These include purple acid phosphatase (PAP), uteroferrin (Uf), type 5 acid phosphatase (Acp 5) and tartrate resistant acid phosphatase (TRAP, TRACP, TR-AP). There is, however, a consensus in the literature that purple acid phosphatase (PAP) relates to those found in non-mammalian species and tartrate resistant acid phosphatase (TRAP) to those found in mammalian species.

Uteroferrin, bovine spleen PAP and tartrate resistant acid phosphatase all refer to mammalian PAPs, whereby research on PAPs expressed in various tissues diverged. Subsequent research has proven that all of these enzymes are the same entity.[10][11]

YouTube Encyclopedic

  • 1/5
    Views:
    9 379
    1 765
    25 367
    599
    4 582
  • Acid Phosphatase Test
  • Top 12 Common Acid Forming Acidic Foods & Common Healing Alkaline Foods
  • Reaction coupling to create glucose 6 phosphate | Biology | Khan Academy
  • Bipolar Androgen Therapy (BAT)- Sam Denmeade MD, Prostate cancer treatment with testosterone bursts
  • Introduction to Chemical Biology 128. Lecture 12. Protein Functions.

Transcription

The acid phosphatase test is a presumptive test for the presence of semen. Take a small cutting no bigger than a few millimeters from the suspected stain and place it in the center of the filter paper. To the cutting add one or two drops of acid phospatase one step reagent. A positive reaction will be indicated by a purple color change. No color change will be observed for a negative reaction. Depending on how concentrated the stain is the color change can take up to one minute to occur.

References

  1. ^ B. C. Antanaitis; P. Aisen (1983). "Uteroferrin and the purple acid phosphatases". Advances in Inorganic Biochemistry. 5: 111–136. PMID 6382957.
  2. ^ David C. Schlosnagle; Fuller W. Bazer; John C. M. Tsibris; R. Michael Roberts (December 1974). "An iron-containing phosphatase induced by progesterone in the uterine fluids of pigs". Journal of Biological Chemistry. 249 (23): 7574–9. doi:10.1016/S0021-9258(19)81276-0. PMID 4373472.
  3. ^ Antanaitis BC, Aisen P (February 1984). "Stoichiometry of iron binding by uteroferrin and its relationship to phosphate content". Journal of Biological Chemistry. 259 (4): 2066–2069. doi:10.1016/S0021-9258(17)43315-1. PMID 6698956.
  4. ^ Bruce P. Gaber; James P. Sheridan; Fuller W. Bazer; R. Michael Roberts (September 1979). "Resonance Raman scattering from uteroferrin, the purple glycoprotein of the porcine uterus". Journal of Biological Chemistry. 254 (17): 8340–8342. doi:10.1016/S0021-9258(19)86895-3. PMID 468828.
  5. ^ Jussi M. Halleen; Helena Kaija; Jan J. Stepan; Pirkko Vihko; H. Kalervo Väänänen (April 1998). "Studies on the protein tyrosine phosphatase activity of tartrate-resistant acid phosphatase". Archives of Biochemistry and Biophysics. 352 (1): 97–102. doi:10.1006/abbi.1998.0600. PMID 9521821.
  6. ^ Deirdre K. Lord; Nicholas C. P. Cross; Maria A. Bevilacqua; Susan H. Rider; Patricia A. Gorman; Ann V. Groves; Donald W. Moss; Denise Sheer; Timothy M. Cox (April 1990). "Type 5 acid phosphatase. Sequence, expression and chromosomal localization of a differentiation-associated protein of the human macrophage". European Journal of Biochemistry. 189 (2): 287–293. doi:10.1111/j.1432-1033.1990.tb15488.x. PMID 2338077.
  7. ^ Gerhard Schenk; Yubin Ge; Lyle E. Carrington; Ceridwen J. Wynne; Iain R. Searle; Bernard J. Carroll; Susan Hamilton; John de Jersey (October 1999). "Binuclear metal centers in plant purple acid phosphatases: Fe-Mn in sweet potato and Fe-Zn in soybean" (PDF). Archives of Biochemistry and Biophysics. 370 (2): 183–189. doi:10.1006/abbi.1999.1407. PMID 10510276.
  8. ^ Thomas Klabunde; Norbert Sträter; Bernt Krebs; Herbert Witzel (June 1995). "Structural relationship between the mammalian Fe(III)-Fe(II) and the Fe(III)-Zn(II) plant purple acid phosphatases". FEBS Letters. 367 (1): 56–60. doi:10.1016/0014-5793(95)00536-I. PMID 7601285.
  9. ^ Gerhard Schenk; Michael L. J. Korsinczky; David A. Hume; Susan Hamilton; John DeJersey (September 2000). "Purple acid phosphatases from bacteria: similarities to mammalian and plant enzymes" (PDF). Gene. 255 (2): 419–424. doi:10.1016/S0378-1119(00)00305-X. PMID 11024303.
  10. ^ Barbro Ek-Rylander; Per Bill; Maria Norgård; Stefan Nilsson; Göran Andersson (December 1991). "Cloning, sequence, and developmental expression of a type 5, tartrate-resistant, acid phosphatase of rat bone". Journal of Biological Chemistry. 266 (36): 24684–24689. doi:10.1016/S0021-9258(18)54284-8. PMID 1722212.
  11. ^ Ping Ling; R. Michael Roberts (April 1993). "Uteroferrin and intracellular tartrate-resistant acid phosphatases are the products of the same gene". Journal of Biological Chemistry. 268 (10): 6896–6902. doi:10.1016/S0021-9258(18)53124-0. PMID 8463220.

External links

This page was last edited on 12 May 2024, at 22:56
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.