To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

1,4-Naphthoquinone

From Wikipedia, the free encyclopedia

Naphthoquinone[1]
Ball-and-stick model
Names
Preferred IUPAC name
Naphthalene-1,4-dione
Other names
1,4-Naphthoquinone
Naphthoquinone
α-Naphthoquinone
Identifiers
3D model (JSmol)
ChEMBL
ChemSpider
ECHA InfoCard 100.004.526 Edit this at Wikidata
UNII
  • InChI=1S/C10H6O2/c11-9-5-6-10(12)8-4-2-1-3-7(8)9/h1-6H
    Key: FRASJONUBLZVQX-UHFFFAOYSA-N
  • InChI=1/C10H6O2/c11-9-5-6-10(12)8-4-2-1-3-7(8)9/h1-6H
    Key: FRASJONUBLZVQX-UHFFFAOYAK
  • O=C1c2ccccc2C(=O)cc1
Properties
C10H6O2
Molar mass 158.15 g/mol
Density 1.422 g/cm3
Melting point 126 °C (259 °F; 399 K)
Boiling point Begins to sublime at 100 °C
0.09 g/L
-73.5·10−6 cm3/mol
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)

1,4-Naphthoquinone or para-naphthoquinone is a quinone derived from naphthalene. It forms volatile yellow triclinic crystals and has a sharp odor similar to benzoquinone. It is almost insoluble in cold water, slightly soluble in petroleum ether, and more soluble in polar organic solvents. In alkaline solutions it produces a reddish-brown color. Vitamin K is a derivative of 1,4-naphthoquinone. It is a planar molecule with one aromatic ring fused to a quinone subunit.[2] It is an isomer of 1,2-naphthoquinone.

YouTube Encyclopedic

  • 1/3
    Views:
    586
    925
    1 169
  • Black Walnut for Yeast Infection
  • Glyphosate
  • Mod-02 Lec-09 Ultraviolet and Visible Spectrophotometry -5 v. Instrumentation

Transcription

Preparation

The industrial synthesis involves aerobic oxidation of naphthalene over a vanadium oxide catalyst:[3]

C10H8 + 3/2 O2 → C10H6O2 + H2O

In the laboratory, naphthoquinone can be produced by the oxidation of a variety of naphthalene compounds. An inexpensive route involves oxidation of naphthalene with chromium trioxide.[4]

Reactions

1,4-Naphthoquinone acts as strong dienophile in Diels-Alder reaction. Its adduct with 1,3-butadiene can be prepared by two methods: 1) long (45 days) exposure of naphthoquinone in neat liquid butadiene taken in huge excess at room temperature in a thick-wall glass tube or 2) fast catalyzed cycloaddition at low temperature in the presence of 1 equivalent of tin(IV) chloride:[5]

Diels-Alder reaction of 1,4-naphthoquinone with 1,3-butadiene
Diels-Alder reaction of 1,4-naphthoquinone with 1,3-butadiene

Uses

1,4-Naphthoquinone is mainly used as a precursor to anthraquinone by reaction with butadiene followed by oxidation. Nitration gives 5-nitro-1,4-naphthalenedione, precursor to an aminoanthroquinone that is used as a dye precursor.[3]

Derivatives

Naphthoquinone forms the central chemical structure of many natural compounds, most notably the K vitamins. 2-Methyl-1,4-naphthoquinone, called menadione, is a more effective coagulant than vitamin K.

Other natural naphthoquinones include juglone, plumbagin, droserone.

Naphthoquinone derivatives have significant pharmacological properties. They are cytotoxic, they have significant antibacterial, antifungal, antiviral, insecticidal, anti-inflammatory, and antipyretic properties. Plants with naphthoquinone content are widely used in China and the countries of South America, where they are used to treat malignant and parasitic diseases.[6]

Naphthoquinone functions as a ligand through its electrophilic carbon-carbon double bonds.[7]

Dichlone, a chlorinated derivative of 1,4-naphthoquinone, is used as a fungicide.

See also

References

  1. ^ Merck Index, 11th Edition, 6315.
  2. ^ Gaultier, J.; Hauw, C. (1965). "Structure de l'α-Naphtoquinone". Acta Crystallographica. 18 (2): 179–183. Bibcode:1965AcCry..18..179G. doi:10.1107/S0365110X65000439.
  3. ^ a b Grolig, J.; Wagner, R. "Naphthoquinones". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a17_067. ISBN 978-3527306732.
  4. ^ Braude, E. A.; Fawcett, J. S. (1953). "1,4-Naphthoquinone" (PDF). Organic Syntheses. 33: 50; Collected Volumes, vol. 4, p. 698.
  5. ^ M.A. Filatov; S. Baluschev; I.Z. Ilieva; V. Enkelmann; T. Miteva; K. Landfester; S.E. Aleshchenkov; A.V. Cheprakov (2012). "Tetraaryltetraanthra[2,3]porphyrins: Synthesis, Structure, and Optical Properties". J. Org. Chem. 77 (24): 11119–11131. doi:10.1021/jo302135q. PMID 23205621.
  6. ^ Babula, P.; Adam, V.; Havel, L.; Kizek, R. (2007). "Naphthoquinones and their Pharmacological Properties". Ceská a Slovenská Farmacie (in Czech). 56 (3): 114–120. PMID 17867522.
  7. ^ Kündig, E. P.; Lomberget, T.; Bragg, R.; Poulard, C.; Bernardinelli, G. (2004). "Desymmetrization of a meso-Diol Complex Derived from [Cr(CO)36-5,8-Naphthoquinone)]: Use of New Diamine Acylation Catalysts". Chemical Communications. 2004 (13): 1548–1549. doi:10.1039/b404006f. PMID 15216374.
This page was last edited on 22 February 2024, at 20:49
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.