To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

From Wikipedia, the free encyclopedia

Curcumin
Demethoxycurcumin
Bisdemethoxycurcumin

A curcuminoid is a linear diarylheptanoid, a relatively small class of plant secondary metabolites that includes curcumin, demethoxycurcumin, and bisdemethoxycurcumin, all isolated from turmeric (curcuma longa). These compounds are natural phenols and produce a pronounced yellow color that is often used to color foods and medicines. Curcumin is obtained from the root of turmeric.

Curcuminoids are soluble in dimethyl sulfoxide (DMSO), acetone and ethanol,[1] but are poorly soluble in lipids. It is possible to increase curcuminoid solubility in aqueous phase with surfactants or co-surfactants.[2] Most common derivatives have different substituents on the phenyl groups.[1] There is an increasing demand for demethoxycurcumin, bisdemethoxycurcumin, and other curcuminoids because of their biological activity.[2]

YouTube Encyclopedic

  • 1/3
    Views:
    56 179
    711 085
    100 006
  • Turmeric vs curcumin
  • Turmeric (Curcumin) Do’s and Don’ts | Latest Evidence (2023)
  • How to Take Curcumin | Watch BEFORE Taking Curcumin | Curcumin Benefits

Transcription

Cyclodextrins

Curcuminoids form a more stable complex with solutions which contain cyclodextrin towards hydrolytic degradations.[3] The stability differs between size and characterization of the cyclodextrins that are used. Dissolution of demethoxycurcumin, bisdemethoxycurcumin and curcumin are greatest in the hydroxypropyl-γ-cyclodextrin (HPγCD) cavity. The curcuminoids which have a substituent connected to the phenyl groups show more affinity for the HPγCD compound. Degradation rate is depended on pH of the solution and how much protection the cyclodextrins provide the curcuminoids. The derivatives are usually more stable than curcumin against hydrolysis in cyclodextrin solution. No covalent bonds are present between the cyclodextrins and the curcuminoids so they are easily released from the complex by simple solvent effects.[1]

Composition and production

The curcumin derivatives demethoxycurcumin and bisdemethoxycurcumin may have antioxidant activities useful in maintaining shelf-life of food products.[2] Pure chemicals of curcumin and its derivatives are not available in the open market. Commercially available curcumin contains 77% curcumin, 17% demethoxycurcumin and 3% bisdemethoxycurcumin from the herb Curcuma longa.[2]

Curcumin is mainly produced in industry as a pigment by using turmeric oleoresin as the starting material which curcuminoids can be isolated from. After the isolation of the curcuminoids, the extract which is about 75% liquor mainly contains oil, resin and more curcuminoids which can be isolated further.[2]

Research

Laboratory and clinical studies have not confirmed any medical use for curcumin, which is difficult to study because it is both unstable and poorly bioavailable, and is unlikely to produce useful lead compounds for drug development. Curcumin, which shows positive results in most drug discovery assays, is regarded as a false lead that medicinal chemists include among "pan-assay interference compounds". This attracts undue experimental attention while failing to advance as viable therapeutic or drug leads.[4][5][6]

References

  1. ^ a b c Tiyaboonchai W, Tungpradit W, Plianbangchang P (June 2007). "Formulation and characterization of curcuminoids loaded solid lipid nanoparticles". Int J Pharm. 337 (1–2): 299–306. doi:10.1016/j.ijpharm.2006.12.043. PMID 17287099.
  2. ^ a b c d e Jayaprakasha GK, Rao LJ, Sakariah KK (2006). "Antioxidant activities of curcumin, demethoxycurcumin and bisdemethoxycurcumin". Food Chemistry. 98 (4): 720–4. doi:10.1016/j.foodchem.2005.06.037.
  3. ^ Tønnesen, H; Mássonb, M; Loftsson, T (September 2002). "Studies of curcumin and curcuminoids. XXVII. Cyclodextrin complexation: solubility, chemical and photochemical stabilit". International Journal of Pharmaceutics. 244 (1–2): 127–135. doi:10.1016/S0378-5173(02)00323-X.
  4. ^ Nelson KM, Dahlin JL, Bisson J, Graham J, Pauli GF, Walters MA (March 2017). "The Essential Medicinal Chemistry of Curcumin". Journal of Medicinal Chemistry. 60 (5): 1620–1637. doi:10.1021/acs.jmedchem.6b00975. PMC 5346970. PMID 28074653.
    See also: Nelson KM, Dahlin JL, Bisson J, Graham J, Pauli GF, Walters MA (May 2017). "Curcumin May (Not) Defy Science". ACS Medicinal Chemistry Letters. 8 (5): 467–470. doi:10.1021/acsmedchemlett.7b00139. PMC 5430405. PMID 28523093.
  5. ^ Baker M (January 2017). "Deceptive curcumin offers cautionary tale for chemists". Nature. 541 (7636): 144–145. Bibcode:2017Natur.541..144B. doi:10.1038/541144a. PMID 28079090.
  6. ^ Bisson J, McAlpine JB, Friesen JB, Chen SN, Graham J, Pauli GF (March 2016). "Can Invalid Bioactives Undermine Natural Product-Based Drug Discovery?". Journal of Medicinal Chemistry. 59 (5): 1671–90. doi:10.1021/acs.jmedchem.5b01009. PMC 4791574. PMID 26505758.
This page was last edited on 30 January 2024, at 23:45
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.