Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

TREE(3)[1]большое число, которое является верхней границей решения в теоретико-графовой теоремы Краскала[⇨]. TREE(3) в невообразимое число раз больше числа Грэма. Число TREE(3) столь велико, что стрелочные нотации Кнута и Конвея не способны его записать.

Теорема Краскала

В теории графов деревом называется граф, в котором все вершины соединены рёбрами (возможно, посредством других вершин) и отсутствуют циклы (последовательности рёбер, соединяющие какую-либо вершину саму с собой). В данном случае деревья являются корневыми, то есть имеют определённую вершину - корень. Это понятное, но неформальное определение дерева. Теорема Краскала[2] утверждает последовательность деревьев TREE(n), описанную следующими законами:

  1. Каждое i-е дерево имеет не более i вершин.
  2. Вершины имеют один из n видов; для TREE(3) удобно называть их «красными», «зелёными» и «синими».
  3. Ни одно дерево не должно являться топологическим минором более позднего дерева.

TREE(1) даёт единственное дерево с одной вершиной: если попытаться добавить ещё одно с двумя вершинами, при удалении любой из них получится первая. TREE(2)=3, в этой последовательности дерево с одной «красной» вершиной, с двумя «синими» и с одной «синей». Но начиная с TREE(3), происходит настоящий взрыв длины последовательности. Тем не менее, теорема Краскала утверждает, что при любом конечном n последовательность не будет бесконечной.

Первое дерево имеет одну «красную» вершину, и вне зависимости от n больше ни одно дерево не имеет «красных» вершин. Иначе, при удалении всех вершин, кроме этой «красной», получилось бы первое дерево.

Слабая tree-функция

Определим tree(n), слабую tree-функцию[3], как длину самой длинной последовательности из деревьев с вершинами одного цвета, описываемой следующими законами:

  1. Каждое i-е дерево имеет не более i+n вершин.
  2. Ни одно дерево не должно являться топологическим минором более позднего дерева.

Известно[3], что , , , а уже больше числа Грэма.

Также известно[4], что TREE(3) намного больше, чем (верхний индекс в данном случае обозначает итерированную функцию).

Масштаб числа TREE(3)

Распространённым заблуждением является утверждение книги рекордов Гиннесса о том, что число Грэма — самое большое число, которое когда-либо использовалось в математическом доказательстве: эта информация давно устарела, так как число TREE(3) также используется в математическом контексте, и оно несоизмеримо больше числа Грэма. Для представления числа TREE(3) бесполезны не только башни степеней, но и нотации Кнута и Конвея. В массивной нотации Бёрда[5] TREE(3) можно примерно выразить как . Общая скорость роста функции TREE(n) оценивается как в терминах быстрорастущей иерархии.

При этом TREE(3) далеко не самое большое число, встречавшееся в математических работах: в последующие годы описывались бо́льшие числа, например такие как SSCG(3)[en], SCG(13)[6], а также числа, задаваемые с помощью невычислимых функций, такие, как число Райо.

Примечания

  1. Jay Bennett. Wrap Your Head Around the Enormity of the Number TREE(3). Popular Mechanics (20 октября 2017). Дата обращения: 27 мая 2020. Архивировано 1 июля 2020 года.
  2. TREE(3) and impartial games | Complex Projective 4-Space. Дата обращения: 1 февраля 2020. Архивировано 1 февраля 2020 года.
  3. 1 2 TREE sequence | Googology Wiki | Fandom. Дата обращения: 1 февраля 2020. Архивировано 9 января 2020 года.
  4. graph theory - How does TREE(3) grow to get so big? (Laymen explanation) - Mathematics Stack Exchange. Дата обращения: 1 февраля 2020. Архивировано 1 февраля 2020 года.
  5. Bird’s array notation. Дата обращения: 20 мая 2022. Архивировано 11 ноября 2021 года.
  6. Subcubic graph number. Дата обращения: 1 февраля 2020. Архивировано 1 февраля 2020 года.

Литература

Эта страница в последний раз была отредактирована 26 августа 2023 в 18:37.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).