Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Формула Эйлера — Маклорена

Из Википедии — свободной энциклопедии

Формула суммирования Эйлера — Маклорена — формула, позволяющая выражать дискретные суммы значений функции через интегралы от функции. В частности, многие асимптотические разложения сумм получаются именно через эту формулу.

Формула была найдена независимо Леонардом Эйлером в 1732 году и Колином Маклореном примерно в 1735 году (и позже была обобщена до формулы Дарбу  (англ.)). Эйлер получил эту формулу, когда ему потребовалось вычислить медленно сходящийся ряд, а Маклорен использовал её для вычисления интегралов.

Формула

Формула Эйлера — Маклорена имеет вид:

где

здесь — натуральное, числа Бернулли, — достаточно гладкая функция, чтобы иметь производные , многочлен Бернулли, — дробная часть x. В случае, когда мало, получаем хорошее приближение для суммы.

Многочлены Бернулли определяются рекуррентно как

Выражение называется периодической функцией Бернулли.

Остаточный член

Остаточный член R может быть легко выражен в терминах :

или эквивалентным образом, получаемым интегрированием по частям, предполагая, что дифференцируема еще раз, и вспоминая, что нечетные числа Бернулли равны нулю:

где . Можно показать, что

где обозначает дзета-функцию Римана. Равенство достигается для четных n и . С помощью этого неравенства остаточный член оценивается как

Доказательство

Операторные соображения

Перед доказательством удобно рассмотреть соображения высшего порядка (принадлежащие Лагранжу) о том, почему такая формула имеет место. Пусть — разностный оператор, — оператор суммирования, — оператор дифференцирования, — оператор интегрирования. Тогда оператор обратен к , а обратен к . Можно выразить через с помощью формулы Тейлора:

т.е. и тогда , а поскольку , то

Применяя это операторное соотношение к , получаем искомую формулу, но без остаточного члена.

Этот вывод чисто формальный и не касается вопросов сходимости.

Доказательство с остаточным членом

Достаточно доказать формулу при , поскольку мы можем любой отрезок с целыми границами разбить на отрезки длины 1 и сдвигом перевести их в . При формула имеет вид

Доказательство будем вести индукцией по m.

База. При . Интегрируя по частям, при , мы получаем:

Шаг. Шаг индукции равносилен доказательству равенства , то есть нужно доказать, что

Здесь снова применима формула интегрирования по частям при : , поэтому формула верна благодаря тому, что

то есть , а это верно, поскольку при нечётных m у нас .

Применение

Сумма степеней

Вычислим сумму степеней . Положим , тогда и , вычисляя интегралы, получаем:

Сумма обратных квадратов

Вычислить сумму

Эйлер вычислил эту сумму до 20 десятичных знаков с помощью небольшого числа членов формулы Эйлера-Маклорена в 1735. Это, вероятно, убедило его в том, что эта сумма равна , что и было им доказано в том же году.[1][2]

Численное интегрирование

Формула Эйлера-Маклорена также может быть использована для детального анализа ошибок численных методов интегрирования. Она объясняет высокую производительность метода трапеций на гладких периодических функциях и используется в определенных методах экстраполяции. Clenshaw–Curtis quadrature существенно изменяет переменные, выражая произвольный интеграл в терминах интегралов периодических функций, для которых приближение Эйлера-Маклорена особенно точно (в этом частном случае формула Эйлера-Маклорена берется в форме дискретного косинус-преобразования). Эта техника называется преобразованием к периодической функции.

Асимптотическое выражение для суммы

Для вычисления асимптотического выражения суммы или ряда обычно чаще всего используется следующая форма формулы Эйлера-Маклорена:

где a,b - целые. Часто формула остается справедливой и при расширении пределов или , или обоих. Во многих случаях интеграл в правой части может быть вычислен замкнутой форме в терминах элементарных функций, даже если сумма в левой части так не может быть выражена. Тогда все члены асимптотического ряда могут быть выражены в терминах элементарных функций. Например,

Здесь левая часть равна , называемая полигамма-функцией первого порядка, определяемая как ; гамма-функция равна , если z натуральное. Полученный результат есть асимптотическое разложение . Это выражение используется как отправной пункт для получения оценки точной ошибки формулы Стирлинга для факториала.

Аппроксимация для гармонических чисел

Полагаем , тогда и тогда получаем

где . Отсюда можно относительно быстро вычислить постоянную Эйлера .

Аппроксимация Стирлинга для факториала

Полагаем , тогда и тогда получаем

где на самом деле . Взяв экспоненту от обеих частей, получим формулу Стирлинга.

Примечания

  1. David J. Pengelley, "Dances between continuous and discrete: Euler's summation formula" Архивная копия от 9 августа 2017 на Wayback Machine, in: Robert Bradley and Ed Sandifer (Eds), Proceedings, Euler 2K+2 Conference (Rumford, Maine, 2002), Euler Society, 2003.
  2. К. П. Кохась. Сумма обратных квадратов // Матем. просв.. — 2004. — Вып. 8. — С. 142–163.

Литература

  • Грэхем Р., Кнут Д., Паташник О. Конкретная математика. — М.: Мир, 1998. — 703 с. — ISBN 5-03-001793-3.
  • Фихтенгольц Г. М. Глава 12. § 6. Обвертывающие и асимптотические ряды. Формула Эйлера-Маклорена // Курс дифференциального и интегрального исчисления. — 7-е изд.,стереотип. — М.: Наука, 1969. — Т. 2. — С. 531—551. — 800 с.
Эта страница в последний раз была отредактирована 28 июня 2021 в 12:07.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).