Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Альтернативы
Недавние
Show all languages
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

Нётеров мо́дуль — это модуль, в котором выполняется условие обрыва возрастающих цепей для его подмодулей, упорядоченных по отношению включения.

Исторически, Гильберт был первым математиком, исследовавшим свойства конечнопорождённости подмодулей. В частности, он доказал теорему Гильберта о базисе, согласно которой любой идеал в кольце многочленов от нескольких переменных является конечнопорождённым (это свойство эквивалентно нётеровости). Однако, свойство нётеровости было названо в честь Эмми Нётер, которая первой осознала степень его важности.

Эквивалентные определения и свойства

Существует несколько эквивалентных определений нётерова модуля:

  • Любая последовательность подмодулей вида стабилизируется, то есть начиная с некоторого
  • В любом непустом множестве подмодулей M существует максимальный элемент. Данное условие эквивалентно первому для любого частично упорядоченного множества (доказательство использует аксиому выбора).
  • Каждый подмодуль модуля M является конечнопорождённым.

Последнее определение особенно полезно, и доказательство его эквивалентности исходному определению элементарно:

  1. Если модуль удовлетворяет свойству из последнего определения, то он удовлетворяет и свойству из первого. В самом деле, если любой подмодуль конечно порожден, то взяв модуль, являющийся объединением всех подмодулей цепи (1) имеем, что он порожден, скажем, элементами . Тогда существует некоторый элемент цепочки , содержащий эти xi и поэтому равный объединению всех Mi. Отсюда
  2. Обратно, если М над кольцом A удовлетворяет свойству из первого определения (эквивалентно, из второго определения) и N — его подмодуль, то во множестве всех конечнопорождённых подмодулей модуля N существует максимальный подмодуль . Если то взяв элемент и построив модуль (или в некоммутативном случае для правого модуля) мы построим больший конечнопорождённый модуль против предположения. Следовательно, N конечно порождён.

Пусть  — некоторый модуль и  — его подмодуль. является нётеровым тогда и только тогда, когда и являются нётеровыми.

Примеры

  • Целые числа, рассматриваемые как модуль на кольцом целых чисел, являются нётеровым модулем.
  • Пусть  — полное кольцо матриц над произвольным полем и  — множество векторов-столбцов над этим полем, то можно сделать модулем над задав умножение элемента модуля на элемент кольца как умножение столбца на матрицу. Тогда является нётеровым модулем.
  • Каждый модуль, являющийся конечным множеством, нётеров.
  • Каждый конечнопорождённый правый модуль над правым нётеровым кольцом нётеров (см. определение ниже).

Связь с другими структурами

Ассоциативное кольцо с единицей называется нётеровым, если оно является нётеровым модулем над самим собой, то есть удовлетворяет условию обрыва возрастающих цепей для идеалов. В некоммутативном случае выделяют левые нётеровы и правые нётеровы кольца, если же кольцо является нётеровым слева и нётеровым справа, его называют просто нётеровым.

Условие нётеровости может быть определено также для бимодулей: бимодуль называется нётеровым, если он удовлетворяет условию обрыва возрастающих цепей для своих подбимодулей. Может случиться, что бимодуль является нётеровым, тогда как структуры левого и правого модуля на нём не являются нётеровыми.

См. также

Литература

  • Атья М., Макдональд И. Введение в коммутативную алгебру. — М.: Мир, 1972
  • Зарисский О., Самюэль Р. Коммутативная алгебра. — М.:ИЛ, 1963
  • Ленг С. Алгебра. — М.:Мир, 1968
Эта страница в последний раз была отредактирована 9 февраля 2024 в 17:11.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).