Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Альтернативы
Недавние
Show all languages
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Метод золотого сечения

Из Википедии — свободной энциклопедии

Метод золотого сечения — метод поиска экстремума действительной функции одной переменной на заданном отрезке. В основе метода лежит принцип деления отрезка в пропорциях золотого сечения. Является одним из простейших вычислительных методов решения задач оптимизации. Впервые представлен Джеком Кифером в 1953 году.

Описание метода

Пусть задана унимодальная функция . Тогда для того, чтобы найти неопределённое значение этой функции на заданном отрезке, отвечающее критерию поиска (пусть это будет минимум), рассматриваемый отрезок делится в пропорции золотого сечения в обоих направлениях, то есть выбираются две точки и такие, что:

Иллюстрация выбора промежуточных точек метода золотого сечения.
, где — пропорция золотого сечения.

Таким образом:

То есть точка делит отрезок в отношении золотого сечения. Аналогично делит отрезок в той же пропорции. Это свойство и используется для построения итеративного процесса.

Алгоритм

  1. На первой итерации заданный отрезок делится двумя симметричными относительно его центра точками и рассчитываются значения в этих точках.
  2. После чего тот из концов отрезка, к которому среди двух вновь поставленных точек ближе оказалась та, значение в которой максимально (для случая поиска минимума), отбрасывают.
  3. На следующей итерации в силу показанного выше свойства золотого сечения уже надо искать всего одну новую точку.
  4. Процедура продолжается до тех пор, пока не будет достигнута заданная точность.

Формализация

  1. Шаг 1. Задаются начальные границы отрезка и точность .
  2. Шаг 2. Рассчитывают начальные точки деления: и значения в них целевой функции: .
    • Если (для поиска max изменить неравенство на ), то
    • Иначе .
  3. Шаг 3.
    • Если , то и останов.
    • Иначе возврат к шагу 2.

Алгоритм взят из книги Мэтьюза и Финка «Численные методы. Использование MATLAB».

Реализация данного алгоритма на языке F#, в которой значения целевой функции используются повторно:

let phi = 0.5 * (1.0 + sqrt 5.0)
let minimize f eps a b = 
    let rec min_rec f eps a b fx1 fx2 = 
        if b - a < eps then 
            0.5 * (a + b)
        else 
            let t = (b - a) / phi
            let x1, x2 = b - t, a + t
            let fx1 = match fx1 with Some v -> v | None -> f x1
            let fx2 = match fx2 with Some v -> v | None -> f x2
            if fx1 >= fx2 then
                min_rec f eps x1 b (Some fx2) None
            else
                min_rec f eps a x2 None (Some fx1)
    min_rec f eps (min a b) (max a b) None None

// Примеры вызова:
minimize cos 1e-6 0.0 6.28 |> printfn "%.10g"
// = 3.141592794; функция f вызвана 34 раза.
minimize (fun x -> (x - 1.0)**2.0) 1e-6 0.0 10.0 |> printfn "%.10g"
// = 1.000000145; функция f вызвана 35 раз.

Метод чисел Фибоначчи

В силу того, что в асимптотике , метод золотого сечения может быть трансформирован в так называемый метод чисел Фибоначчи. Однако при этом в силу свойств чисел Фибоначчи количество итераций строго ограничено. Это удобно, если сразу задано количество возможных обращений к функции.

Алгоритм

  1. Шаг 1. Задаются начальные границы отрезка и число итераций , рассчитывают начальные точки деления: и значения в них целевой функции: .
  2. Шаг 2. .
    • Если , то .
    • Иначе .
  3. Шаг 3.
    • Если , то и остановка.
    • Иначе возврат к шагу 2.

Литература

  1. Акулич И. Л. Математическое программирование в примерах и задачах: Учеб. пособие для студентов эконом. спец. вузов. — М.: Высш. шк., 1986.
  2. Гилл Ф., Мюррей У., Райт М. Практическая оптимизация. Пер. с англ. — М.: Мир, 1985.
  3. Коршунов Ю. М. Математические основы кибернетики. — М.: Энергоатомиздат, 1972.
  4. Максимов Ю. А., Филлиповская Е. А. Алгоритмы решения задач нелинейного программирования. — М.: МИФИ, 1982.
  5. Максимов Ю. А. Алгоритмы линейного и дискретного программирования. — М.: МИФИ, 1980.
  6. Корн Г., Корн Т. Справочник по математике для научных работников и инженеров. — М.: Наука, 1970. — С. 575—576.
  7. Корн Г., Корн Т. Справочник по математике для научных работников и инженеров. — М.: Наука, 1973. — С. 832 с илл..
  8. Джон Г. Мэтьюз, Куртис Д. Финк. Численные методы. Использование MATLAB. — 3-е издание. — М., СПб.: Вильямс, 2001. — С. 716.

См. также

Эта страница в последний раз была отредактирована 15 августа 2023 в 07:26.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).