Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Альтернативы
Недавние
Show all languages
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Граф Мёбиуса — Кантора

Из Википедии — свободной энциклопедии

Граф Мёбиуса — Канторасимметричный двудольный кубический граф с 16 вершинами и 24 рёбрами, названный в честь Августа Фердинанда Мёбиуса и Зелигмана Кантора (1857—1903). Его можно определить как обобщённый граф Петерсена , то есть он образован вершинами восьмиугольника, соединёнными с восьмиугольной звездой, в которой каждая точка соединена с третьей по счёту точкой.

Конфигурация Мёбиуса — Кантора

Конфигурация Мёбиуса-Кантора

Мёбиус в 1828 году[1] поставил вопрос о существовании пары многоугольников с сторонами в каждом, обладающих свойством, что вершины одного многоугольника лежат на прямых, проходящих через стороны другого, и наоборот. Если такая пара существует, то вершины и стороны этих многоугольников должны образовывать проективную конфигурацию. Для не существует решения на евклидовой плоскости, но в 1882 году Кантор[2] нашёл пару многоугольников такого типа в обобщении задачи, в котором точки и рёбра принадлежат комплексной проективной плоскости, то есть в решении Кантора координатами вершин многоугольника являются комплексные числа. Решение Кантора для — пара взаимно вписанных четырёхугольника на комплексной проективной плоскости, называется конфигурацией Мёбиуса — Кантора. Граф Мёбиуса — Кантора получил своё имя от конфигурации Мёбиуса — Кантора, поскольку он является графом Леви этой конфигурации. Граф имеет одну вершину для каждой точки конфигурации и по точке для каждой тройки, а рёбра соединяют две вершины, если одна вершина соответствует точке, а другая — тройке, содержащей эту точку.

Связь с гиперкубом

Граф Мёбиуса — Кантора является подграфом четырёхмерного графа гиперкуба и образован путём удаления восьми рёбер из гиперкуба[3]. Поскольку гиперкуб является графом единичных расстояний, граф Мёбиуса — Кантора можно тоже изобразить на плоскости со всеми сторонами единичной длины, хотя такое представление приведёт к появлению перекрещивающихся рёбер.

Топология

Граф Мёбиуса — Кантора, вложенный в тор. Рёбра, выходящие вверх из центрального квадрата следует рассматривать соединёнными с соответствующими рёбрами, выходящими из квадрата вниз, а выходящие из квадрата рёбра слева следует рассматривать соединёнными с соответствующими рёбрами, выходящими из квадрата вправо.

Граф Мёбиуса — Кантора нельзя вложить в плоскость без пересечений, его число скрещиваний равно 4, и он является наименьшим кубическим графом с таким числом скрещиваний[4]. Кроме того, граф даёт пример графа, все подграфы которого имеют число пересечений на два и более отличающихся от числа пересечений самого графа[5]. Однако он является тороидальным — существует его вложение в тор, при котором все его грани являются шестиугольниками[6]. Двойственный граф этого вложения — это граф гипероктаэдра .

Существует даже более симметричное вложения графа Мёбиуса — Кантора в двойной тор[en], являющееся правильной картой и имеющее шесть восьмиугольных граней, в котором все 96 симметрий графа можно осуществить как симметрии вложения[7]. 96-элементную группу симметрии вложения имеет граф Кэли, который может быть вложен в двойной тор. В 1984 году показано, что это единственная группа рода два[8].

Скульптура Девитта Годфри (DeWitt Godfrey) и Дуэйна Мартинеса (Duane Martinez) в виде двойного тора с вложенным графом Мёбиуса — Кантора выставлялась в Техническом музее Словении на шестой Словенской международной конференции по теории графов в 2007 году. В 2013 году вращающаяся версия скульптуры была выставлена в Колгейтском университете.

Граф Мёбиуса — Кантора допускает вложение в тройной тор[en] (тор третьего рода), которое даёт правильную карту, имеющую четыре 12-угольных грани; [6].

В 2004 году в рамках исследования возможных химических углеродных структур, изучено семейство всех вложений графа Мёбиуса — Кантора в двумерные многообразия, в результате показано, что существует 759 неэквивалентных вложений[9].

Алгебраические свойства

Группа автоморфизмов графа Мёбиуса — Кантора — это группа порядка 96[10]. Она действует транзитивно на вершины и на рёбра, поэтому граф Мёбиуса — Кантора является симметричным. У него есть автоморфизмы, которые переводят любую вершину в любую другую и любое ребро в любое другое. Согласно списку Фостера граф Мёбиуса — Кантора является единственным симметричным графом с 16 вершинами и наименьшим кубическим симметричным графом, который не является дистанционно-транзитивным[11]. Граф Мёбиуса — Кантора является также графом Кэли.

Обобщённый граф Петерсена является вершинно-транзитивным в том и только в том случае, когда и , или когда , и рёберно-транзитивным только в следующих семи случаях: [12]. Таким образом, граф Мёбиуса — Кантора является одним этих семи ребёрно-транзитивных обобщённых графов Петерсена. Его симметричное вложение в двойной тор — одна из семи правильных кубических карт, для которых общее число вершин вдвое больше числа вершин граней[13]. Среди семи симметричных обобщённых графов Петерсена находятся кубический граф , граф Петерсена , граф додекаэдра , граф Дезарга и граф Науру .

Характеристический многочлен графа Мёбиуса — Кантора равен:

Примечания

  1. Мёбиус, 1828.
  2. Кантор, 1882.
  3. Коксетер, 1950.
  4. последовательность A110507 в OEIS
  5. Dan McQuillan, R. Bruce Richter. On the crossing numbers of certain generalized Petersen graphs // Discrete Mathematics. — 1992. — Т. 104, вып. 3. — С. 311–320. — doi:10.1016/0012-365X(92)90453-M.
  6. 1 2 Марушич, Писанский, 2000.
  7. Трелфол, 1932.
  8. Такер, 1984.
  9. Лейнен, Куэльманс, 2004.
  10. Royle, G. F016A data (недоступная ссылка)
  11. Conder, M.[en], Dobcsányi, P. «Trivalent Symmetric Graphs Up to 768 Vertices.» J. Combin. Math. Combin. Comput. 40, 41-63, 2002
  12. Фрухт, Грейвер, Уоткинс, 1971.
  13. Макмюллен, 1992.

Ссылки

  • H. S. M. Coxeter. Self-dual configurations and regular graphs // Bulletin of the American Mathematical Society. — 1950. — Т. 56, вып. 5. — С. 413–455. — doi:10.1090/S0002-9904-1950-09407-5.
  • R. Frucht, J. E. Graver, M. E. Watkins. The groups of the generalized Petersen graphs // Proceedings of the Cambridge Philosophical Society. — 1971. — Т. 70, вып. 02. — С. 211–218. — doi:10.1017/S0305004100049811.
  • S. Kantor. Über die Configurationen (3, 3) mit den Indices 8, 9 und ihren Zusammenhang mit den Curven dritter Ordnung // Sitzungsberichte der Mathematisch-Naturwissenschaftlichen Classe der Kaiserlichen Akademie der Wissenschaften, Wien. — 1882. — Т. 84, вып. 1. — С. 915–932..
  • E. Lijnen, A. Ceulemans. Oriented 2-Cell Embeddings of a Graph and Their Symmetry Classification: Generating Algorithms and Case Study of the Möbius-Kantor Graph // J. Chem. Inf. Comput. Sci.. — 2004. — Т. 44, вып. 5. — С. 1552–1564. — doi:10.1021/ci049865c. — PMID 15446812.
  • Dragan Marušič, Tomaž Pisanski. The remarkable generalized Petersen graph G(8,3) // Math. Slovaca. — 2000. — Т. 50. — С. 117–121.
  • Peter McMullen. The regular polyhedra of type {p, 3} with 2p vertices // Geometriae Dedicata. — 1992. — Т. 43, вып. 3. — С. 285–289. — doi:10.1007/BF00151518.
  • A. F. Möbius. Kann von zwei dreiseitigen Pyramiden eine jede in Bezug auf die andere um- und eingeschrieben zugleich heissen? // J. Reine Angew. Math.. — 1828. — Т. 3. — С. 273–278.. В Gesammelte Werke (1886), том 1, страницы 439—446.
  • Thomas W. Tucker. There is only one group of genus two // Journal of Combinatorial Theory, Series B. — 1984. — Т. 36, вып. 3. — С. 269–275. — doi:10.1016/0095-8956(84)90032-7.
  • W. Threlfall. Gruppenbilder // Abhandlungen der Mathematisch-Physischen Klasse der Sächsischen Akademie der Wissenschaften. — 1932. — Т. 41, вып. 6. — С. 1–59..
  • Unveiling of the sculpture.

Внешние ссылки

Эта страница в последний раз была отредактирована 6 февраля 2021 в 14:00.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).